Rockville Metro Plaza II

121 Rockville Pike Rockville, Maryland

Senior Thesis Final Report

John Vais

PSUAE Thesis Advisor: Dr. Hanagan 4/11/2014

Rockville Metro Plaza II

121 Rockville Pike, Rockville, Maryland

John M. Vais | Structural Option

Building Statistics

Size: 322,925 sq. ft. (GSF) 200,000 sq. ft. Office Space 14,000 sq. ft. Retail 114,000 sq. ft. Parking
No. of Stories: 10 Above Grade 3 Below Grade (parking)
Delivery Method: Design-Bid Build
Construction: Sept. 2011 – April 2013

Project Team

Development Team: Foulger-Pratt Architect: WDG Architecture Civil Engineer: Joyce Engineering Structural: Cagley & Associates MEP: WFT Engineering Landscape Arch: Studio 39

Architectural Features

- Precast concrete panel façade
- Spacious/open office floor plans
- Large window for natural lighting
- LEED Platinum rating

Structural System

- Spread footings 10 ksi bearing capacity soil
- 8" thick one-way slabs
- Post-tensioned beams span building width

Mechanical System

- Two rooftop cooling towers
- VAV system on each floor
- Exhaust fans and CO detectors in garage

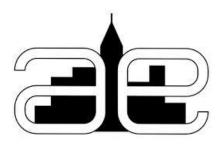
Lighting/Electrical Systems

- Central 2500A bus duct riser, 277/480V
- 250A panel boards serve each floor
- Fluorescent lamps illuminate office areas
- 450 kW diesel generator

http://www.engr.psu.edu/ae/thesis/portfolios/2014/jmv5148/index.html

Acknowledgements

I would like to thank the building developer, Foulger-Pratt, for allowing me to use Rockville Metro Plaza II for my senior thesis project.


Additionally, I would like to thank Mr. Frank Malits, Mr. Daniel Camp, and the office of Cagley and Associates for providing me with the drawings, information, and advice I needed to complete this project.

Thanks to all the PSU Architectural Engineering faculty, who provided me with the knowledge and tool which made this thesis possible.

And finally, I would like to thank my friends and family, whose support has made it possible to successfully complete these last five years of school. I cannot express how much your support is appreciated.

Contents

Executive Summary	
Building Summary	
Site Location	5
Design Codes	6
Existing Structural Systems Overview	7
Thesis Objectives	11
Gravity Loads	13
Gravity System Redesign	15
Wind Loads	
Seismic Loads	24
Lateral System Redesign	
Load Combinations	
Computer Modeling	
Wind Drift	
Seismic Drift	
Torsion	
Overturning Moment	
Connection Design	
Architectural Study	41
Cost/Schedule Study	
Redesign Summary	45
Resources	
Appendix A	47
Appendix B	64
Appendix C	73
Appendix D	81
Appendix E	
Appendix F	

Executive Summary

The focus of this report is to investigate an alternative structural system for Rockville Metro Plaza II. The original concrete design inherently has its advantages and disadvantages. A new structural system comprised mainly of steel was chosen to compare to the original. This report will explore in depth the pros and cons of each system and compare the two against one another. This investigation will aim to minimize any impacts to architecturally important features such as open floor plans and occupant views. The investigation will also aim to keep the realities of economics, constructability, and scheduling in mind.

Figure 1: South West Corner – by JMV

For this report, the subgrade parking structure was left as originally designed and the seismic base was taken to be at grade. The levels above grade were redesigned using composite beams, lightweight concrete on composite metal decking, and steel supporting columns. A hybrid system of steel and concrete elements was employed as the lateral system.

The use of steel beams resulted in deeper floor depths than in the original design, and thus the redesigned structure's height was adjusted accordingly. This change in story height as well as the change in the building's mass at each floor elicited the need for recalculated seismic and wind loads. After the loads were recalculated and applied to the structure, it was determined that wind controlled the design of the structure's lateral system. Additionally, the design of the lateral system was governed by drift more so than by strength requirements. Overall building torsion and overturning were also investigated and found to be suitable for the redesign.

An architectural study was conducted in order to assess the realistic implications which inevitably come along with the alternative system. The layout of the lateral system was given great consideration and the resulting design was selected with the goal of keeping the floor plan open and the views unhindered. Implications regarding the constructability of the system were also considered. The economical and scheduling impacts of each of the two systems were determined and weighed. It was determined that the steel structure would have an approximate cost of \$5.888 million versus the concrete structure, which was found to cost \$6.23 million. This resulted in savings of approximately 5% on the total structure's cost. The schedule study proved the steel system to produce a shorter erection time as well.

Building Summary

Rockville Metro II is the second part of a three phase project that will aid in revitalizing its community. The building is planned to bring new retail venues and Class A office space to the Rockville, MD area. In September of 2011, construction began on this ten story structure.

The structure was planned to have three levels of below grade parking. An initial geotechnical report concluded that the soil at this level would be adequate to support the structure on concrete footings alone. The only concern found was that the water level could exceed this elevation. Thus damp-proofing measures were taken in the design.

The entire structural system is built using cast-in-place Figure 2: Rockville Pike Entrance - JMV

concrete. The lower levels of the structure (parking and retail levels) use flat plate, two-way slabs with mild reinforcing to support the floors. Columns which bear these levels incorporate drop caps for added flexural strength, deflection control, and better resistance to punching shear forces. The upper levels of the structure (the office spaces) also use a flat plate slab with mild reinforcing to support the floors. However, in order to facilitate a more flexible office space, larger column-to-column spans (40 feet) were designed. This required additional support of the slabs. To achieve this, wide, shallow post tensioned beams were added to the design. These aided in the control of deflection as well as reduced the potential for cracking. All live loading was determined using ASCE 7 as a guide.

In order to respond to the potential for lateral loads on the structure such as seismic and wind, shear walls were incorporated into the structural design. These walls were placed at the center of the structure about the elevator core. These walls were designed to be 12" thick with rebar reinforcing. ASCE 7 also aided in determining the loading conditions for these elements. The roof of the structure is specified as a green roof. MET II is set to achieve a LEED rating of Platinum, and the green roof is one of the attributes that will aid in this achievement.

In April of 2013, construction on MET II concluded, and MET II became the National Headquarters for Choice Hotels. The following report will describe the structural systems of MET II in more depth. The structure will be analyzed as originally designed and built. Cagley and Associates is responsible for the original design the structural system of MET II and has provided all structural drawings for this report.

Site Location

Rockville Metro Plaza II is located in Rockville, Maryland, just 20 miles northwest of the heart of Washington D.C. The site sits prominently on Rockville Pike which is one of the main routes through the area. Across from the lot is the Rockville Metro stop. With such close proximity to these passage ways, this site boasts a transportation convenience for both employees and visitors alike.

The bustling Rockville area is primarily occupied by businesses, retail, restaurants, and high rise apartments. It is an ever expanding and reawakening locale, as new construction projects continually rejuvenate the lively scene. Upon visiting the area, it can be quite evident why Choice Hotels would decide to make MET II the site of their new North American Headquarters.

Figure 3: Map of Site Location – From "maps.google.com"

The new construction of MET II would be an addition to the current Rockville Metro Plaza I to the Northwest. This posed a complication during construction, for impact on MET I's daily function had to be minimized as much as possible. Excavation of the addition would be required to yield to the existing structure as well.

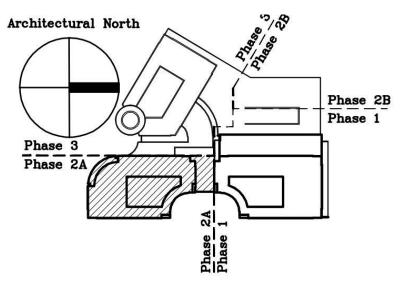


Figure 4: Map of Building Relations – by WDG Arch.

Design Codes

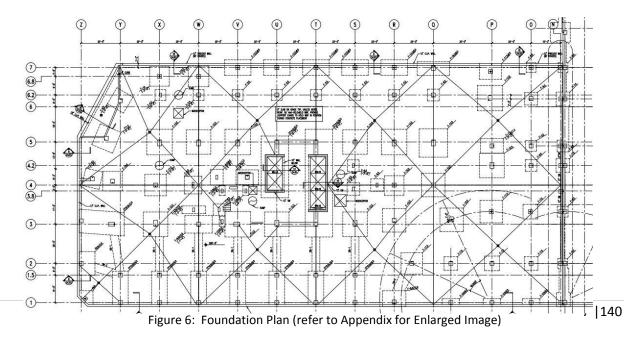
As defined on page S1.00 of the construction documents, the following codes are applicable to the design and construction of MET II's structural system and will also be used in the calculations included in this report:

- "The International Building Code-2009", International Code Council
- "Minimum Design Loads for Buildings and Other Structures" (ASCE 7), American Society of Civil Engineers
- "Building Code Requirements for Structural Concrete, ACI 318-02", American Concrete Institute
- "ACI Manual of Concrete Practice Parts 1 Through 5", American Concrete Institute
- "Post Tensioning Manual",
 Post Tension Institute

The following were added for analysis:

 "Steel Construction Manual" – (14th ed.) American Institute of Steel Construction

Figure 5: Rockville Town Square Obelisk – by JMV

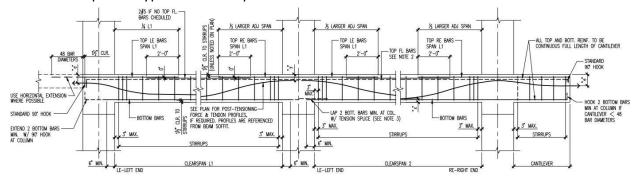

Existing Structural Systems Overview

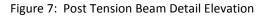
Foundations

The foundation of MET II is comprised of concrete footings and strap beams. The depths, sizes, and reinforcing of footings vary greatly and are dependent upon the column load which it is supporting/distributing. All footings and strap beams were poured using 3000 psi concrete. A net allowable bearing pressure of 10,000 psf was used to design the foundations which are to be placed on undisturbed soil at foundation level. Strap beams had to be used in certain sections where the footing could not be placed centered under the column (e.g. property line abutment). The strap beam helps to distribute the weight of the eccentrically loaded column to adjacent footings and thus aids in resisting overturning. See Figure 6 below for an illustration of the foundation design.

Based on the geotechnical study conducted by Specialized Engineering, it was determined that at the proposed foundation level of this site, the soil was comprised mainly of decomposed and weathered rock. Their Subsurface Exploration and Geotechnical Evaluation report concluded that concrete footings would be adequate to support the anticipated load of the structure.

The one concern which was pointed out in the report was that ground water levels could be at or above the foundation level. In response, the foundation and its walls were designed with this in mind. A layer of granular fill was placed below the slab on grade, with drainage pipes placed throughout. These pipes direct the water to a sump pit which can expel the water when called upon. A vapor barrier lines the underside of the S.O.G. and water stops are installed at steps in the slab grade. Gravel and drains are installed similarly about the exterior foundation walls, as well as sheathing and coatings for damp-proofing.


Floor Systems


The structure's floor systems vary depending on the occupancy/function of the space which they are supporting as well as the distance being spanned. The concrete used for most slabs and beams was specified as 4500 psi normal weight concrete (unless noted otherwise). Refer to the Appendix for illustration of the floor systems as well as the typical bays.

Beginning at the slab on grade, we find a 5" thick concrete slab reinforced with 6x6 – W2.0 x W2.0 welded wire fabric. Two way flat slabs are employed on parking levels P2, P3, and P6. These slabs are 8" thick and use mild reinforcing which is distributed appropriately in order to resist positive midspan moment as well as negative moment created at slab-column intersections. A bottom mat is comprised of #4 bars running each way at 12" on center. The size, length, and spacing of top bars (and additional bottom bars) vary depending on loading and span distance. Drop caps are also incorporated around columns in order provide better flexural capacity, aid in deflections, and better resist punching.

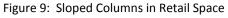
The on-grade (Retail Level) level of the structure also uses only mild reinforcing in the construction of its slab. The slab thickness and elevation varies across this floor depending on the area and its use. Throughout the lobby and retail spaces, a 9" slab was found to be sufficient. However, the loading dock area and the courtyard require 10" and 12" slabs respectively. A bottom mat is comprised of #5 bars running each way at 14" on center. Once again, drop caps are used to add flexure and shear strength.

The remaining floors are designated to be office levels. These levels combine a mild-reinforced slab with post tensioned beams in order to achieve a larger slab bay (typically 40' x 20'). A bottom mat is comprised of #4 bars running each way at 12" on center. In order to achieve the large span of 40' while maintaining a relatively thin floor depth, the use of post tensioning in this design is critical (typical detail shown below in Figure 7). It allows for deflection and cracking to be controlled/reduced over these spans while the slab depth is kept to 8" thick and beams are kept to a typical 20" in depth.

Column System

The structure of MET II is comprised of concrete columns. The majority of the building's columns are 24" x 24" in dimension and are reinforced with #10 and #11 rebar. The exterior of the building incorporates 30" diam. columns as architectural accents. The strength of concrete used to construct the columns is stepped down as the column rises: 5000/6000 psi ground through the 4th level, 4000 psi 5th through the 8th level, and 3000 psi 9th level and above.

The office portion of the structure achieves a fairly repetitive column layout (see the appendix for floor plan illustrations). However, the exterior-to-interior column span on each the East and West side of the structure is 40' in length. This architecturally driven span allows tenants to have a wider, more flexible floor plan. In response to this, post tension beams are used to transfer the slab load to the columns. Within these levels, these beams are typically 48" x 20" in dimension.


Within the parking levels an extra row of columns has

been added on each the east and west sides. This divides the otherwise 40' span in two (thus eliminating the need for post tension beams as seen in the upper floors). Also, most interior columns in the parking areas also incorporate drop caps for added flexural, shear capacity, and deflection control.

In order to respond to architectural features that stood in the path of select columns, it was necessary to design some columns as sloped. On the plaza and P6 levels, interior columns are commonly sloped to accommodate the standard parking stall space in the garage levels below, as seen in figure 6 to the right.

COL THE

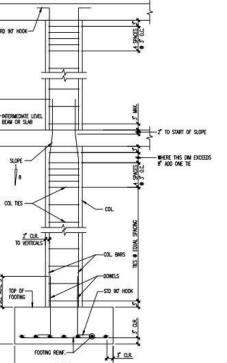
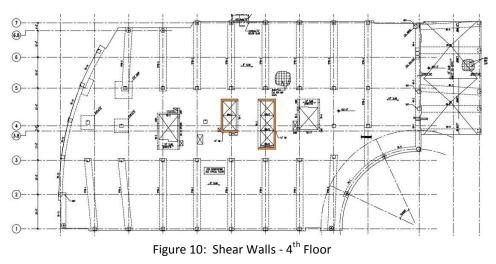



Figure 8: Column Detail Elevation

Lateral System

Rockville Metro Plaza II uses shear walls and moment frames as the main lateral force resisting system. Lateral loads that are applied to the building are resisted by this shear wall and moment frame system as these elements transfer the force to the building's foundation.

Shear walls 12" in thickness frame the two elevator towers at the center of the structure and extend from the foundation to the roof of the structure (see figure 7 - shear wall locations are highlighted). Another 12" thick shear wall is present along part of the Northern face of the structure on the sub-grade levels. The strength of concrete used follows the same gradation as applied to the columns. As with most concrete structures, the rigid construction allows most of the building's frames to act as moment frames. This reduces the need for multiple shear walls and allows MET II to be designed with so few.

Roof System

In order to aid MET II in its pursuit of a LEED Platinum rating, a green roof system was designed as the main roofing system. The roof begins with a mildly reinforced, 8" concrete slab. A bottom mat is comprised of #4 bars running each way at 12" on center. Top bars and additional bottom bars are placed as needed. Next, a roof membrane and waterproofing layer are applied, on top of which rigid insulation is placed. A thin moisture retention mat is draped,

followed by a drainage mat. Four inches of a light weight substrate soil mix is laid, in which a sedum mix is planted. Sedum is a genus of flowering plants of the family Crassulaceae and is widely used as an alternative to grass on green roofs. Refer to Figure 11 to the right for the green roof composition.

Figure 11: Green Roof Layers

Thesis Objectives

Problem Statement

Through past studies, the concrete structure of Rockville Metro Plaza II proved to be capable of withstanding the required design loads. The shallow floor system and long span beams create versatile rentable spaces on each level. However, the use of concrete creates a heavy structure which requires larger gravity members and foundations.

Proposed Solution

In Technical Report III, alternative floor systems were studied. Systems considered were assessed based on their ability to maintain the open floor plan as seen in the original system. Cost, fireproofing, and several other considerations were also measured in the comparison of systems. The study concluded with identifying a composite steel floor system as a viable alternative to the current concrete system.

A steel system for the office levels will likely reduce the overall weight of the structure. This may benefit the foundation of the building, resulting smaller foundation elements. Similarly, the building's gravity system may see benefits in member sizing as dead loads are reduced. This will also impact the lateral loads on the building, further reducing seismic loads. The parking levels will likely remain unchanged in the new design however.

The redesign of the structural system will also require that the lateral system be considered. The implementation of braced frames, moment frames, and/or shear walls will be investigated. Lateral forces will be recalculated and considered once again, incorporating any changes made to the structure.

Impacts that this redesigned system will have on other areas of the building will also need to be explored. One consideration is the change in floor depth due to the size of steel members. This will require coordination with MEP systems and may lead to increasing the overall building height. Additionally, the architecture of the office space will require analysis when placing lateral elements. Fireproofing steel elements will also be necessary, but will result in additional costs.

In conclusion, an entire redesign of the structural system will be completed. The alternative design will then be compared back to the original and pros and cons will be weighted to determine the feasibility of the alternative.

Cost and Schedule

Altering the main structural system of Rockville Metro Plaza II will have a significant effect on the cost and schedule of the project. The impact that this change has on the construction schedule will be assessed through calculations and comparisons. A cost analysis will also be investigated in order to determine the feasibility of the alternative system.

Architecture

The redesigned structural system will have many potential impacts on the architecture of Rockville Metro Plaza II. A deeper floor system will increase the floor to floor height of the structure. This issue will consider the routing of MEP system, local zoning requirements, and impacts regarding the façade. Additionally, the redesigned lateral force resisting system will be of significant focus. The placement of these elements must respect the interior flow of the office space as well as the intended aesthetics of the building's façade.

MAE Requirements

Knowledge gained from graduate level course work will be incorporated into the investigation, analysis, and design of work in the depth and breaths of the proposed project.

AE 530 – Computer Modeling of Building Structures - Knowledge from this course will be integral in creating effective and useful models. These models which will be created in ETABS and RAM will allow for the analysis and design of the gravity and lateral systems of the structure.

AE 534 – Analysis and Design of Steel Connections - Material from this course will be relied upon heavily as connection design will be necessary for the steel structural system redesign.

AE 538 – Earthquake Resistant Design of Buildings- Additionally, coursework from this class will be incorporated in designing the lateral system of the structure.

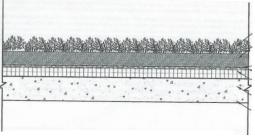
Figure 12: Exterior Perspective

Gravity Loads

In comparing the design values provided on the structural documents to those listed in the International Building Code and ASCE 7, it is evident that all live load requirements were met or exceeded. The main areas of where this trend is evident are mechanical rooms and office areas. Each of these spaces were designed with higher live loads most likely due to the owner's specification, anticipated actual loading, or the simply the office's standard practice for good design. The comparison of live load values may be seen in Table 4 below. These same values are used in the redesign in order to provide a better comparison between systems.

ASCE 7 was used in calculating the flat roof snow load of the structure. Using this document as a guide, the same value as presented on the structural documents was derived. This calculation can be seen in Table 5 below. Snow drift was not considered in this report. The super-imposed values presented below in Table 6 are also as listed on the structural documents.

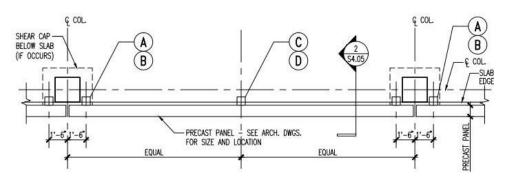
Table 1: Floor Live Loads							
Area	As Designed (psf)	ASCE 7-05 (psf)					
Corridors (first level)	100	100					
Corridors (above first)	100	80					
Lobbies	100	100					
Marquees/Canopies	75	75					
Mechanical Room	150 (U)	125					
Offices	80 + 20 (partitions)	50 + 20 (partitions)					
Parking Garage	50	40					
Retail – First Floor	100	100					
Stairs/Exit Ways	100 (U)	100					
Storage (Light)	125 (U)	125					


Table 2: Flat Roof Snow Load			Table 3: St	perimposed Dead Loads
			Area	Design Value (psf)
Ground Snow Load	P _g =	25 psf	Floor	5
Snow Exposure Factor	C _e =	1.0	Roof	10
(Terrain Category B)				
Thermal Factor	C _t =	1.0		
Importance Factor	I _s =	1.0		
			1	
$P_{f} = 0.7*P_{g}*C_{e}*C_{t}*I_{s}*P_{s}$	P _g =	17.5 psf	1	

Gravity Loads Continued

In determining the loading of the redesigned structure, the live loading from the original system was directly carried over. For example, in the office spaces, the occupancy live load as designed and defined in the IBC is an office load of 80 psf with an additional 20 psf for the possibility of partitions installed in the space. The main difference in load comes from the change in dead load due to the lighter redesigned system. In terms of loading, the slab itself and the supporting beams contribute most of the dead load to the floor system. Such items as flooring, hanging ceiling tiles, and mechanical/lighting equipment are relatively light and are accounted for in the super imposed dead load.

In pursuit of a LEED rating, the roof of MET II was designated as a green roof composition. Green roofs are a more environmentally friendly alternative to the standard roof. They reduce heat island effects, reduce rainwater runoff (which lessens the potential for sewer overflow), and provide a habitat for birds and insects, as well as many other benefits. For the structure, however, this can equate to a heavier roof as there will be more mass present than that of a


standard roof. The roof is designated as an extensive green roof which means that the vegetation will mainly grasses and similar small plants (e.g. sedum). These plants have relatively shallow root systems and thus do not require a deep soil base, as only a 4" depth is used. The element is considered to be architecturally important to the structure and it's LEED Rating, thus the

green roof is carried into the redesigned structure.

Figure 13: Green Roof Cross

Rockville Metro II is enclosed by a wall system comprised of precast concrete panels and aluminum framed glass windows. This system is attached to the structural system's slabs and columns. Within the original design, each precast panel spans between two exterior columns. Two connections are made at each column and to the slab at mid-span. These connections are both load bearing and non-load bearing. The load bearing connections (i.e. support weight of panel) only occur at the columns. Other connections act to tie back the panel to the structure and to resist loads perpendicular to the panel. The redesign steel system assumes that this same connection type (or similar) will be possible.

Gravity System Redesign

The design of the gravity system began by initially considering the typical office bay. Results from Tech III were revisited in order to aid in the bay's layout. It was determined that a composite beam system was most promising and thus this system was employed. Design began by determining the loading on the bay as well as its geometry. The long span configuration provides fewer connections and was thus chosen for its constructability. The deck was selected to meet unshored conditions thus bettering the constructability of the system once again. A 2" composite metal deck (2VLI20) with 3.25" of lightweight concrete topping (115 pcf) was selected from the Vulcraft Catalogue. This configuration provides the necessary two hour minimum fire rating for the space while aiming to minimize any impacts on the depth of the floor system.

The image below displays the RAM Structural System model which was used to design the gravity system of the structure. Blue elements designate the item as a gravity element whereas red designates it as part of the lateral system. Through an iterative process, the members of the gravity system were designed.

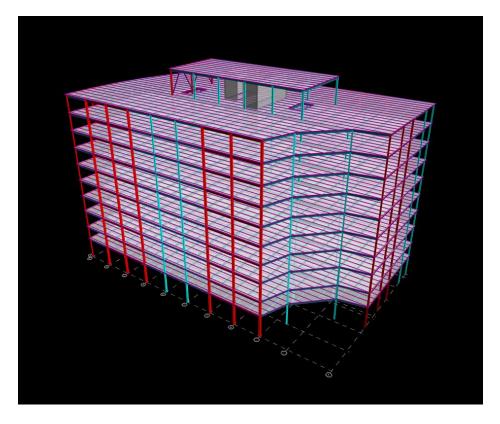


Figure 15: RAM Structural System Building

Gravity System Redesign Continued

Figure 16: Typical Redesigned Office Framing Plan

The above image displays the floor plan for a typical office level within Rockville Metro Plaza II. The redesigned floor system employs camber and composite action throughout many of the beam and girder elements. Identification of these features have however been removed from the image for clarity. Camber was reserved for those members spanning over 24' and requiring a minimum of ¾" of camber. The amount of camber was increased by ¼" as needed (with an upper bound of 4"). Studs were limited to 12" spacing and uniform distribution. While two rows of studs were allowed in the program, it was sought to provide only a single row on beams. These amendments to the programs criteria allow for ease in constructability and manufacture of elements.

The columns of the redesigned system were designed in RAM Structural System's Column Module. All columns were designed with appropriate splicing increments which in turn allow for ease in construction. Gravity columns are spliced on two level increments. This acknowledges constructability and transportation influences as well as factors regarding safety.

All hand calculations and spot checks for beams and columns are available in Appendix A.

Floor Depth Comparison

One key advantage of the original concrete system over the steel redesign is that it possesses a relatively shallow floor depth. Within the post-tensioned original design, the deepest structural component extends to 20" below the floor surface. The steel redesign however requires a typical depth of 23.25" below the top of slab. Also note that in the original design, the post-tensioned beams only span key distances and end prior to the building's core. Thus the center of the building has a depth of only 8" due to the two-way slab type configuration in this section. This leaves a much greater margin for mechanical space. However the steel redesign requires that the new 23.25" structural depth be seen throughout the floor system. At maximum depth, the redesigned steel system extends 26.25" below the top of slab. This depth occurs only in certain areas where required by the loading and geometry. It was ensured that these few elements would not be interfering with the main HVAC ducts within the ceiling.

It was found necessary to resolve the difference in the floor depths, and so after examination of the mechanical drawings and consideration of the duct sizes, 10" were added to each level. It was reasoned that this added height would ensure sufficient space for the mechanical elements. This changed the plenum space from a total depth of 2'-9" to 3'-7" overall. This additional depth was made to the overall height rather than taken from the floor to ceiling height of the office space. This was done in order to keep the open and airy feel of the office which was architecturally sought. It was also reasoned that that the tall ceiling height added to the value of the rental space and that this dimension should therefore not to be abridged. The new overall height also elicited the requisite for recalculated lateral loads.

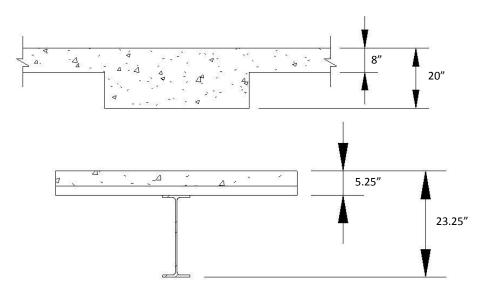


Figure 17: Beam Depth Comparison

Wind Loads

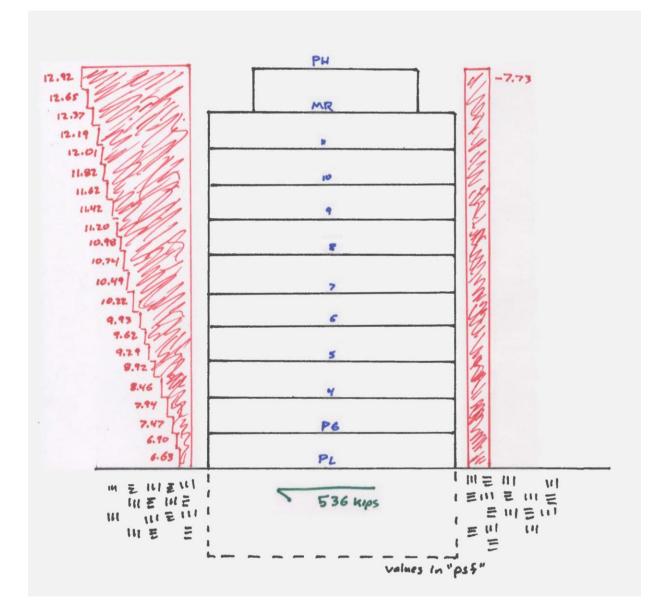
In order to determine the wind load on the structure of the building, ASCE 7-05's Method 2 was implemented (as described in Chapter 6 of the document). Wind loads in each the North-South and East-West directions were analyzed. Based on geographical information and building characteristics, uniform pressures were determined for each face of the structure. These pressures were converted into forces on each story level and used to calculate base shears and overturning moments. Roof uplift forces were not considered at this time. Results and loading diagrams are presented below and on the following pages. Detailed calculations of this analysis may be located in Appendix B of this document.

The wind loads were recalculated for the redesigned steel structure. This was deemed necessary due to the height increase required in the redesigned building, which inevitably alters the lateral loading on the structure. The following tables display the recalculated wind pressures applied to the structure in each respective direction. Load pressure diagrams also included display the distribution of pressures on the face of the structure.

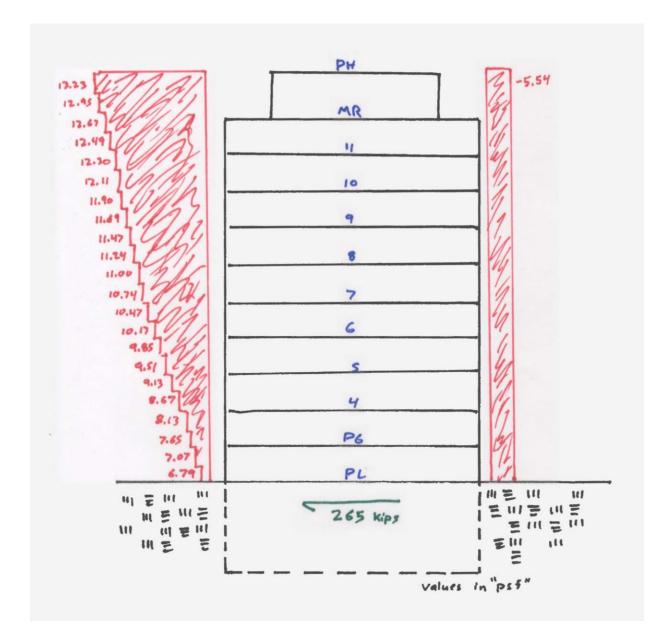
Figure 18: Perspective View of Southern Face - JMV

Wind Pressure – East-West

	Table 4: East-West Design Pressures								
	Height	Windward Pressure	Leeward Pressure	Total Pressure	Total Force	Story Shear	Overturning Moment		
	(ft)	(psf)	(psf)	(psf)	(kips)	(kips)	(k-ft)		
Penthouse	150.33	12.92	-7.73	20.64	29.49	29.49	4433.68		
	139.75	12.65	-7.73	20.38					
Main Roof	129.17	12.37	-7.73	20.09	61.58	91.07	7953.77		
	122.88	12.19	-7.73	19.92					
11th	116.58	12.01	-7.73	19.74	51.91	142.98	6051.35		
	110.29	11.82	-7.73	19.55					
10th	104.00	11.62	-7.73	19.35	50.86	193.84	5289.95		
	97.71	11.42	-7.73	19.15					
9th	91.42	11.20	-7.73	18.93	49.73	243.57	4545.84		
	85.13	10.98	-7.73	18.71					
8th	78.83	10.74	-7.73	18.47	48.47	292.03	3820.68		
	72.54	10.49	-7.73	18.21					
7th	66.25	10.22	-7.73	17.95	47.04	339.08	3116.62		
	59.96	9.93	-7.73	17.66					
6th	53.67	9.62	-7.73	17.35	45.40	384.48	2436.49		
	47.38	9.29	-7.73	17.01					
5th	41.08	8.92	-7.73	16.64	45.22	429.70	1857.86		
	34.25	8.46	-7.73	16.19					
4th	27.42	7.94	-7.73	15.67	39.50	469.20	1083.00		
	22.08	7.47	-7.73	15.19					
P6	16.75	6.90	-7.73	14.63	41.63	510.83	697.33		
	8.38	6.63	-7.73	14.36					
Plaza Level	0.00	6.63	-7.73	14.36	25.25	536.08	0.00		
							41286.57		


Base Shear	536.08 Kips
Overturning Moment	41286.57 Kip-ft

Wind Pressure – North-South


	Table 5: North-South Design Pressures							
	Height	Windward Pressure	Leeward Pressure	Total Pressure	Total Force	Story Shear	Overturning Moment	
	(ft)	(psf)	(psf)	(psf)	(kips)	(kips)	(kip-ft)	
Penthouse	150.33	13.23	-5.54	18.77	10.33	10.33	1552.67	
	139.75	12.95	-5.54	18.49				
Main Roof	129.17	12.67	-5.54	18.21	29.02	39.35	3748.32	
	122.88	12.49	-5.54	18.03				
11th	116.58	12.30	-5.54	17.84	26.79	66.14	3123.62	
	110.29	12.11	-5.54	17.65				
10th	104.00	11.90	-5.54	17.45	26.18	92.32	2723.13	
	97.71	11.69	-5.54	17.24				
9th	91.42	11.47	-5.54	17.01	25.52	117.84	2332.75	
	85.13	11.24	-5.54	16.78				
8th	78.83	11.00	-5.54	16.54	24.78	142.62	1953.47	
	72.54	10.74	-5.54	16.28				
7th	66.25	10.47	-5.54	16.01	23.95	166.57	1586.53	
	59.96	10.17	-5.54	15.71				
6th	53.67	9.85	-5.54	15.40	22.99	189.56	1233.60	
	47.38	9.51	-5.54	15.05				
5th	41.08	9.13	-5.54	14.67	22.73	212.28	933.72	
	34.25	8.67	-5.54	14.21				
4th	27.42	8.13	-5.54	13.67	19.65	231.94	538.81	
	22.08	7.65	-5.54	13.19				
P6	16.75	7.07	-5.54	12.61	20.46	252.40	342.72	
	8.38	6.79	-5.54	12.33				
Plaza Level	0.00	6.79	-5.54	12.33	12.39	264.79	0.00	
							20069.35	

Base Shear	264.79 Kips
Overturning Moment	20069.35 Kip-ft

East – West Pressure Diagram

North – South Pressure Diagram

Wind Load Summary

The additional height increase of the redesigned steel structure provides slight increases in the wind loading on the structure as anticipated. Each direction experiences a 7.9% increase in base shear values. Base shear increased from 246 kips to 265 kips and 497 kips to 536 kips in the North-South and East-West directions respectively.

Through calculating the wind pressures on the structure, it becomes evident that the wind load in the East-West direction is the most critical. This can be seen by comparing the calculated base shear and overturning moment in each direction. The base shear in the East-West direction is 536.08 kips, compared to the value of 264.79 kips in the North-South direction. The overturning moment follows this relationship as well, with a value in the East-West direction nearly twice as large as that of the North-South direction.

This result was well anticipated when considering the length of each side of the structure. The East and West sides are measured to be 210' in length while the North and South faces are only 120' in length. A larger surface area would in turn face more pressure from the wind which translates to a larger force on the structure in said direction. This observation is in agreement with the results obtained from the calculations and analysis.

The benefit in using ASCE 7-05 is that it aids the designer in translating wind speed to a wind pressure which may be applied to the face of the structure. This pressure is then calculated into a resultant force (based on tributary area) which may be assumed to act at each story. This follows the actual load path of the wind force. In order for the floor to transfer the lateral load to shear walls and moment frames, it must be assumed to be a rigid diaphragm. Within MET II, the shear walls are at the core of the structure and also act to create the elevator shaft. Specifically designed steel columns and beams form the moment frame systems.

Figure 19: Exterior View from Across Rockville Pike – by JMV

Seismic Loads

The City of Rockville is not known for high seismic activity. Still it is part of good practice to design a building to withstand such ground motion as the load case may control the design of the lateral system. For this analysis, chapters 11 and 12 of ASCE 7-05 were employed. Using site features and building characteristics (such as seismic ground moth ion values and the weight of the dead load on the structure), forces could be derived based on the building's expected response. This method allows for the base shear and overturning moment of the structure to be determined. These results may then be compared to values calculated in other loading scenarios in order to determine the design value for the structure's lateral system. Note it was once again necessary to recalculate this load in the redesigned steel structure due to the fact that building height as well as floor mass was altered.

The Plaza Level and parking levels below grade did not contribute to the calculations as they were considered to be at or below the seismic base. The weight of the building that was calculated included all dead loads (i.e. concrete structure, superimposed, etc.) plus 50% of the live load for partitions and the full operating weight of equipment.

The equivalent lateral force method was determined to be applicable to this analysis. The main calculations and results of this analysis may be found on the pages that follow. Detailed calculations of other variables (such as building weights) are available in Appendix C.

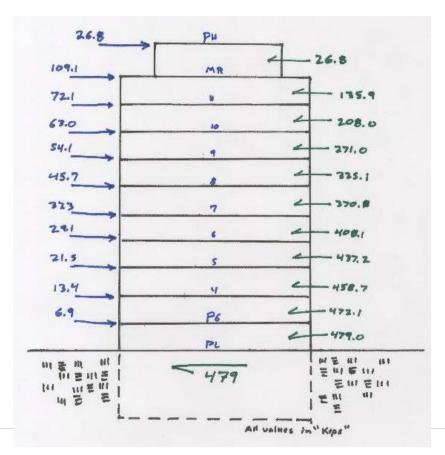


Figure 20: Exterior View from Across Rockville Pike Intersection – by JMV

Table 6: Seismic Design Variables					
			ASCE Reference		
Soil Classification		С			
Occupancy Category		II	Table 1-1		
Importance Factor	l _e	1.0	Table 11.5-1		
Structural System		F	Table 12.2-1		
Spectral Response Acceleration, Short	Ss	0.156g	USGC Website		
Spectral Response Acceleration, 1 s	S ₁	0.051g	USGC Website		
Site Coefficient	F_{a}	1.2	Table 11.4-1		
Site Coefficient	F _v	1.7	Table 11.4-2		
MCE Spectral Response Accel., Short	S _{MS}	0.188	Eq. 11.4-1		
MCE Spectral Response Accel., 1 s	S_{M1}	0.086	Eq. 11.4-2		
Design Spectral Acceleration, Short	S _{DS}	0.1248	Eq. 11.4-3		
Design Spectral Acceleration, 1 s	S_{D1}	0.0578	Eq. 11.4-4		
Seismic Design Category	S_{DC}	А	Tables 11.6-1,2		
Response Modification Coefficient (E-W)	R	3.0	Table 12.2-1		
Response Modification Coefficient (N-S)	R	3.25	Table 12.2-1		
Approximate Period Parameter	Ct	0.02	Table 12.8-2		
Building Height	h _n	149'	Arch Dwg.		
Approximate Period Parameter	х	0.75	Table 12.8-2		
Approx. Fundamental Period	Ta	0.853 s	Eq. 12.8-7		
Long Period Transition Period	Τ _L	8.0 s	Fig. 22-15		
Seismic Response Coefficient (E-W)	Cs	0.0226	Eq.'s 12.8-2,3		
Seismic Response Coefficient (N-S)	Cs	0.0209	Eq.'s 12.8-2,3		
Structure Period Exponent	k	1.176	Section 12.8.3		

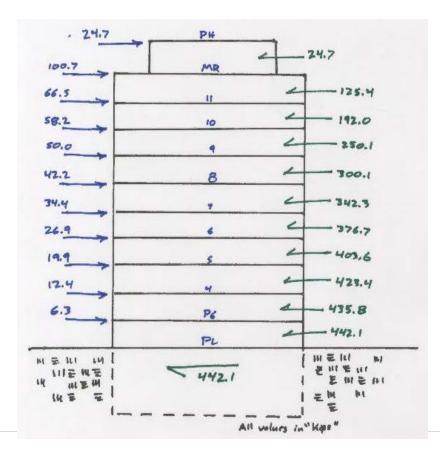

Table 7: Design Values						
East-West North-South						
Effective Seismic Weight	21205 kips	21205 kips				
Base Shear	479 kips	442 kips				
Overturning Moment	47025 kips-ft	43408 kips-ft				

Table 8: Seismic Calculations East-West							
Level	Story Weight	Height	Forces (F _x)	Story Shear (V _x)	Moments (M _x)		
	(kips)	(ft)	(kips)	(kips)	(k-ft)		
Pent Roof	551	150.33	26.8	26.8	4024.104		
Main Roof	2683	129.17	109.1	135.9	14096.42		
11th Floor	1999	116.58	72.1	208.0	8401.099		
10th Floor	1999	104.00	63.0	271.0	6552.037		
9th Floor	1999	91.42	54.1	325.1	4948.535		
8th Floor	2010	78.83	45.7	370.8	3605.862		
7th Floor	2010	66.25	37.3	408.1	2469.638		
6th Floor	2010	53.67	29.1	437.2	1561.446		
5th Floor	2035	41.08	21.5	458.7	883.4656		
4th Floor	2041	27.42	13.4	472.1	367.5514		
P6	1869	16.75	6.9	479.0	115.1233		
Plaza Level	-	0.00	-	-	-		
Total	21205	-	479.0	-	47025.28		

26 |140

Table 9: Seismic Calculations North-South							
Level	Story Weight	Moments (M _x)					
	(kips)	(ft)	(kips)	(kips)	(k-ft)		
Pent Roof	551	150.33	24.7	24.7	3714.558		
Main Roof	2683	129.17	100.7	125.4	13012.08		
11th Floor	1999	116.58	66.5	192.0	7754.861		
10th Floor	1999	104.00	58.2	250.1	6048.034		
9th Floor	1999	91.42	50.0	300.1	4567.878		
8th Floor	2010	78.83	42.2	342.3	3328.488		
7th Floor	2010	66.25	34.4	376.7	2279.666		
6th Floor	2010	53.67	26.9	403.6	1441.335		
5th Floor	2035	41.08	19.9	423.4	815.5067		
4th Floor	2041	27.42	12.4	435.8	339.2782		
P6	1869	16.75	6.3	442.1	106.2676		
Plaza Level	-	0.00	-	-	-		
Total	21205	-	442.1	-	43407.95		

Seismic Load Summary

The seismic analysis executed provides a design base shear and overturning moment for each orthogonal direction of the structure. This is necessary as each direction will have a slightly different lateral force resisting system. In the East West direction, the design base shear is 479 kips and the overturning moment is 47025 kip-ft. In the East-West direction, the base shear and overturning moment have been determined to be 442 kips and 43408 kip-ft respectively. These values were computed using the equivalent lateral force method as defined in ASCE 7-05. This method allows the designer to interpret the expected ground motion and characteristics of the structure into the design forces shown.

As previously stated, it was necessary to recalculate these forces as not only did the building height change, but the entire structural system did as well. This amendment presented a new building weight and a new lateral force resisting system. The building weight was significantly decreased relative to the original concrete structure. This lighter structure therefore produces less seismic forces as less mass is present. However, the Response Modification Coefficient decreased as well. The change of this value (which is a direct result of the lateral force resisting systems employed) offset some of the force reductions that came from the reduced weight. In comparison to the original design, the overall seismic forces were reduced. The new steel structural system experiences approximately 25-30% less seismic force (relative to each direction). (Note that the seismic base shear was calculated to be 643 kips in each direction of the original concrete structure.)

When comparing the found seismic forces to the results calculated for wind, we find that seismic conditions do control in this case. Therefore, as with the original concrete design, the new steel structure's lateral system's design is too controlled by the wind load.

Figure 21: Exterior Perspective – by JMV

Lateral System Redesign

In the original design of the structure, concrete shear walls and concrete moment frames compose the lateral force resisting system in each principle direction. The moment frames were comprised of the columns, slabs, and post-tensioned beams. This essentially meant that the entire building participated in resisting the lateral load.

The redesigned steel system retained the core shear walls of the original design. The possibility of changing the core to braced frames was considered but was rejected for architectural reasons. The remainder of the system is primarily comprised of steel moment frames. Also, one eccentrically braced frame was included in the design. This element was introduced in effort to realign the center of mass with the center of rigidity, with will be elaborated on in the Torsion section. For further explanations of the lateral system selection, see the Architectural Breadth section.

In each principle direction, the floor diaphragm is assumed to be rigid and it therefore is allowed to transfer the lateral load to the lateral force resisting system at each respective level. The braced frames work based on rigid frame action, as they develop shear forces and bending moments in the frame elements and joints of the configuration. The shear walls resist the lateral force by primarily employing shear and axial forces. Finally, the braced frame acts as a truss type element, using axial loads in members to redirect the lateral load to the ground.

The image below depicts the steel redesign lateral system of Rockville Metro Plaza II. In the N-S direction, the shear walls are shown in red and the moment frames in blue. In the E-W direction, the shear walls are shown in purple, the moment frames in green, and the concentrically braced frame in orange.

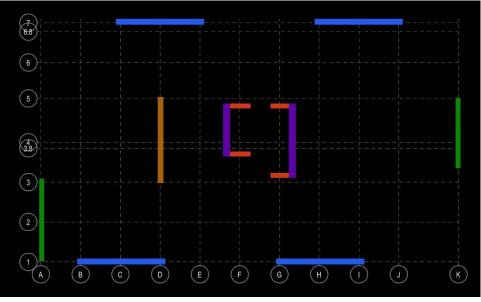


Figure 22: Lateral System Component Locations

Load Combinations

In order to determine the maximum design load on the structure, various load combinations were considered. The minimum combinations that must be considered when designing for strength are defined in section 2.3.2 of ASCE 7-05. Here, seven load combinations are defined as follows:

- 1. 1.4(D + F)
- 2. $1.2(D + F + T) + 1.6(L + H) + 0.5(L_r \text{ or } S \text{ or } R)$
- 3. $1.2D + 1.6(L_r \text{ or } S \text{ or } R) + (L \text{ or } 0.8W)$
- 4. 1.2D + 1.6W + L + 0.5(L_r or S or R)
- 5. 1.2D + 1.0E + L + 0.2S
- 6. 0.9D + 1.6W + 1.6H
- 7. 0.9D + 1.0E + 1.6H

In considering the lateral wind force, ASCE 7-05 cites four different wind combinations that must be considered. These cases are defined in chapter six of the document in Figure 6-9 (shown below). After assessing all possible combinations, Case 2 was found to be the most critical. In considering seismic forces on the structure, ASCE 7-05 cites in section 12.8.4.2 that a minimum of 5 percent accidental must be considered on the structure.

After analyzing the forces and deflections of the required minimum load combinations shown above, it was found that the N-S direction and the E-W direction were both predominantly controlled by the load combination of 0.9D + 1.6W. Considering the location's low seismic activity, it is expected that wind will control the design. It is also reasonable that this load combination controls over $1.2D + 1.6W + L + 0.5(L_r \text{ or S or R})$. This makes sense considering that the relatively lighter steel structure would inevitably have less resistance to uplift.

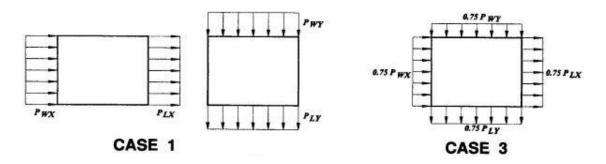


Figure 23: Select ASCE 7-05 Design Wind Load Cases

Computer Modeling

For the design and analysis of each the lateral system and gravity system, RAM Structural Systems were employed. The layout was reproduced in the Modeler module. Here gravity and lateral members were assigned and the building's geometry was established. RAM Steel Beam was then used for the design of gravity members. Once the gravity members of ach floor were configured, the model continued to RAM Steel Column where the gravity columns were designed. In each design module, member designs generated by the software were checked. In many cases, sizes were changed either for economy, size restrictions, or in favor of a more appropriate stud configuration.

The lateral force resisting system was designed using the Frame module of RAM. Here, load cases were initially defined as they applied to drift criteria. Wind and seismic load cases were considered, as well as the possible effects of P-Delta forces. Diaphragms were considered to be rigid in this analysis. Reduced steel sections were not used as the initial focus was to design for drift and to obtain the building's natural periods. The model was run and after iterations of member size adjustments, viable results were observed. Drifts were checked against the accepted industry standard of h/400 and P-Delta effects were satisfied through reviewing that proper Stability Coefficients were obtained.

Next, the members of the lateral system were checked for strength requirements. The reduced stiffness for steel members was employed and Tb=1.0 for an initial starting point. Wind and seismic load cases were created specific for strength design. For these new load cases, the building's natural period (which was achieved in the step prior using the member unreduced stiffness values) was incorporated as per the direct design method.

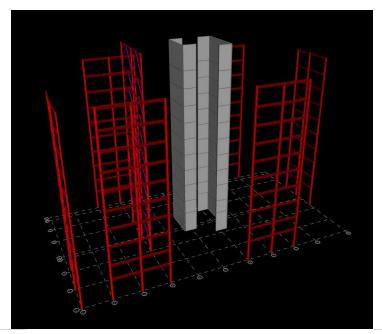


Figure 24: RAM Lateral System Model

Evaluation of whether notional loads needed to be considered in all load cases was conducted. The model was run with and without the effect of P-Delta. The results of the drift ratios were compared to assess the effect of P-Delta effects and it was determined that they need only be considered with gravity loads. B1 factors were engaged to account for small P-Delta effects not accounted for in the analysis. B2 factors were not used as P-delta effects were employed in the analysis. After analysis, it was determined that the reduced stiffness value needed to be modified to Tb=0.986. Although this modification penalizes all members, it was found justifiable relative to other options due to the fact that the change was so insignificant. This adjustment was made and the model was run again. The results were found to pass all criteria of the steel code check relative to AISC-360.

Mode shapes of the structure as well as the deflected shapes were prominently used throughout this process in order to quickly view the building's performance as well as assure that the model was properly functioning.

Initial models of individual bay segments were created in order to determine sizing options and optimal geometric configurations of the floor system. This allowed all feasible options to be weighed and the most suitable one to be selected. This study built upon the results of Tech III. Note that the base of the moment frames will be set top concrete columns of the garage level. Since these columns will be built integrally with the foundation wall, the reaction at the base of the steel columns has been modeled as fixed. When test models were run with the substitution of pinned bases, the resulting displacements differed by 5.2%, thus it was deemed that the fixed assumption was reasonable.

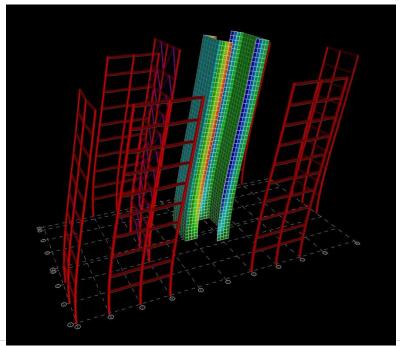


Figure 25: RAM Model – X-Wind Displacement

Wind Drift

In order to obtain the building's story drift values that are incurred due to wind, serviceability wind loads were applied to the computer model. For this calculation, critical locations were selected and assessed (i.e. locations that are farthest from the center of rigidity as they proved to yield the greatest drifts). Industry standards limit the overall building drift to 1/400th of the building's height. For this, the drift of the main roof level is limited as follows:

$$\Delta_{MAX} = (129.17' \times 12''/1') / 400 = 3.87''$$

After analyzing the loads in the computer model for unfactored (serviceability) wind forces, the following results were obtained:

	Table 10: Wind Drifts (N-S)			Гable 11: Wind Dri	ifts (E-W)
Level	Story Drift (in)	Total Drift (in)	Level	Story Drift (in)	Total Drift (in)
Roof	0.306	3.332	Roof	0.173	1.496
11 th	0.318	2.899	11 th	0.176	1.323
10 th	0.330	2.592	10^{th}	0.177	1.147
9 th	0.341	2.274	9 th	0.176	0.969
8 th	0.343	1.944	8 th	0.172	0.793
7 th	0.337	1.603	7 th	0.163	0.621
6 th	0.316	1.260	6 th	0.149	0.458
5 th	0.296	0.923	5 th	0.140	0.308
4 th	0.176	0.607	4 th	0.087	0.169
P6	0.134	0.310	P6	0.082	0.082

The above tables prove that the structure's deflection due to wind forces is well within the industry's standard tolerance. It is found that the building will deflect more in the North-South direction. Even though this direction has a small load, there is less stiffness/redundancy in the lateral system of this direction. Therefore it is reasonable that this be the case.

The drift values above satisfy individual story drift limitations for all typical levels (values are less than $12.58 \times 12 / 400 = 0.377$ "). Further calculations regarding the values above may be found in the tables of Appendix D. Note that the modeling assumption of fixed bases was employed. As the steel columns will be attached to concrete columns built integrally with the garage wall, this assumption is valid. Comparing models of fixed versus pinned connections in this situation further validated the assumption as approximately only a 5% difference in drifts was observed.

Seismic Drift

In order to obtain the building's story drift values that are incurred due to seismic forces, seismic loads were applied to the computer models. For this calculation, critical locations were selected and assessed (i.e. locations that are farthest from the center of rigidity as they proved to yield the greatest drifts). For this criterion, Chapter 12 of ASCE 7-05 limits story drift to two percent of the building's height. Thus the total drift of the main roof level is limited as follows:

$$\Delta_{MAX} = (129.17' \times 12''/1') \times 0.02 = 31''$$

After analyzing the loads in the computer model for factored (strength) seismic forces, the following results were obtained:

Table 12: Seismic Drifts (N-S)			Table 13: Seismic Drifts (E-W)		
Level	Story Drift (in)	Total Drift (in)	Level	Story Drift (in)	Total Drift (in)
Roof	0.708	5.989	Roof	0.356	1.412
11 th	0.724	5.281	11 th	0.177	1.056
10 th	0.735	4.556	10 th	0.174	0.879
9 th	0.735	3.822	9 th	0.166	0.705
8 th	0.716	3.086	8 th	0.153	0.539
7 th	0.677	2.370	7 th	0.135	0.386
6 th	0.610	1.693	6 th	0.121	0.251
5 th	0.547	1.083	5 th	0.071	0.130
4 th	0.312	0.536	4 th	0.001	0.060
P6	0.224	0.224	P6	0.059	0.059

The above drift values have been adjusted as per ASCE 7-05 where:

$$\delta_x = C_d \times \delta_{xe} / I$$

The resulting amplified drifts were calculated using a C_d value of 3 (this value being controlled by the steel moment frames which have been classified as "steel ordinary moment frames" in this scenario). The importance factor was considered as 1.0. It is clear that the total drifts do not exceed the allowable drift for the structure. This is expected given the low seismicity of the geography as well as the reduced weight of the steel structure redesign. This warrants that seismic drifts will not become large enough to result in unfavorable secondary effects.

Torsion

Torsional forces result from a number of different contributing factors. The most common torsion inducing factor is having an eccentricity between the center of rigidity and the applied load. In the case of seismic forces, loads are applied at the center of mass and in the case of wind forces, loads are applied at the center of pressure. The torsional moment on a given level is defined as the applied force multiplied by the perpendicular distance from where it is applied to the center of rigidity. The farther these points are from the center of rigidity, the larger the resulting torsional moment.

Torsional moments are also induced by various load cases as defined in ASCE 7-05. Regarding wind, load patterns 2 and 4 of Figure 6-9 of the document require that a minimum eccentricity equal to 15% of the building width be considered. In the case of seismic forces, the prevision requires a minimal accidental eccentricity of 5% to be considered.

Due to the building's geometry, the centers of mass and pressure do not coincide with the center of rigidity in the models of Rockville Metro Plaza II (as depicted in Figure 24). Thus torsion from eccentricities is created. These torsional moments must be considered in addition to the torsional moments listed in ASCE 7-05. In the original concrete structure, torsion played a significant role in the design, and thus this issue was deeply considered in the redesign of the steel structure. In order to mitigate the effects of torsion, a set of braced frames was added to the lateral force resisting system in effort to return the center of rigidity closer to the centers of mass and pressure, thus reducing the eccentricity. In the original concrete design, the controlling lateral case in this direction was wind load case 2, which incorporates a torsional element. In the steel redesign, wind load case 1 (full wind pressure of a single orthogonal pressure) is the controlling lateral case. Therefore, torsion was successfully mitigated in the redesigned steel structure and it no longer plays as significant a role as it did in the original concrete structure.

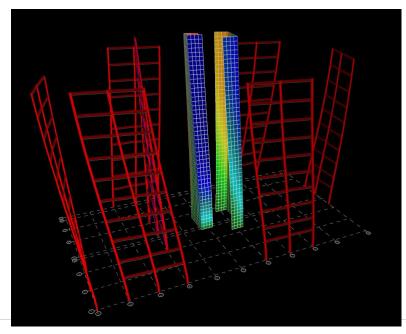


Figure 26: RAM Model – Amplified Displacement of a Case 2 Wind Load

Overturning Moment

Overturning moment is induced by the lateral forces that act on the structure. This item may impact several building components, but their effect is most commonly viewed upon the foundation. While individual footings may be isolated for analysis in order to see how overturning moment will affect them, it is also reasonable to view this issue on a more global scale. By comparing the full overturning moment caused by the lateral load to the resisting moment available from the dead load, it can be quickly assessed as to whether the structure will have a stability issue or not.

In considering individual columns, the moment is transferred via a coupled force. One column within a frame will receive a compressive load while the other receives a tensile load. It is important to ensure that an individual column is not seeing any net tension since uplift should be minimized if not eliminated. It should also be ensure that nominal compressive loads are not exceeded. It is also possible that moment may be accumulated in a single column. This effect must be taken into account as well.

The following data is calculated based on the story shears at each level. Once appropriate load factors are applied, (1.6 to wind and 1.0 to seismic), it becomes evident that wind is controlling this design factor in the E-W direction with a (factored) moment of 66,059 kip-ft (1.6 x 41,287) and seismic is controlling in the N-S direction with a (factored) moment of 43,408 kip-ft (1.0 x 43,408). This is less than the (factored) moment due to the building weight 2,003,872 kip-ft in the N-S direction and 1,145,070 kip-ft in the E-W direction. See Appendix D for further calculations.

From this comparison, it is evident that the structure will not experience overall building overturning. However, elements such as the steel moment frames could potentially see a net uplift force. In such a situation, it becomes necessary to design the connections accordingly, especially the connections at the base of the frame. It should be ensured that if a net uplift force is present at the steel to concrete connection, that the weight of the garage levels are substantial enough to eliminate it by the time it comes to the footing (as typical footings cannot resist this tensile force).

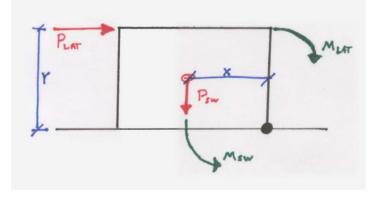
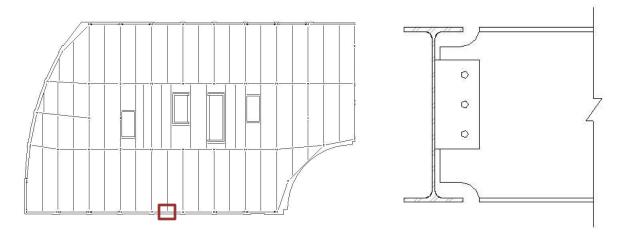


Figure 27: Depiction of Global Overturning Moment

	Table 14: Wind Ov	verturning Mome	nt (E-W)		
Level	Height (ft)	Story Force (k)	Overturning Moment (k-ft)		
Pent	150.33	29.49	4433.68		
Roof	129.17	61.58	7953.77		
11 th	116.58	51.91	6051.35		
10^{th}	104.00	50.86	5289.95		
9 th	91.42	49.73	4545.84		
8 th	78.83	48.47	3820.68		
7 th	66.25	47.04	3116.62		
6 th	53.67	45.40	2436.49		
5 th	41.08	45.22	1857.86		
4 th	27.42	39.50	1083.00		
P6	16.75	41.63	697.33		
	Totals	510.83	41286.57		

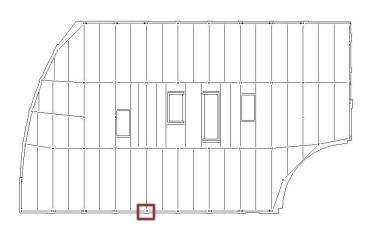
	Table 15: Wind Ov	verturning Mome	nt (N-S)		
Level	Height (ft)	Story Force (k)	Overturning Moment (k-ft)		
Pent	150.33	10.33	1552.67		
Roof	129.17	29.02	3748.32		
11 th	116.58	26.79	3123.62		
10^{th}	104.00	26.18	2723.13		
9 th	91.42	25.52	2332.75		
8 th	78.83	24.78	1953.47		
7 th	66.25	23.95	1586.53		
6 th	53.67	22.99	1233.60		
5 th	41.08	22.73	933.72		
4 th	27.42	19.65	538.81		
P6	16.75	20.46	342.72		
	Totals	252.40	20069.35		

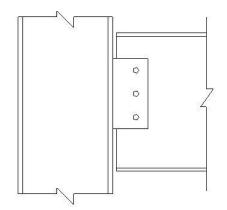
T	Cable 16: Seismic O	verturning Mome	ent (E-W)
Level	Height (ft)	Story Force (k)	Overturning Moment (k-ft)
Pent	150.33	26.77	4024.10
Roof	129.17	109.13	14096.42
11 th	116.58	72.06	8401.10
10^{th}	104.00	63.00	6552.04
9 th	91.42	54.13	4948.53
8 th	78.83	45.74	3605.86
7 th	66.25	37.28	2469.64
6 th	53.67	29.10	1561.45
5 th	41.08	21.50	883.47
4 th	27.42	13.41	367.55
P6	16.75	6.87	115.12
	Totals	478.99	47025.28


]	Fable 17: Seismic (Overturning Mom	ent (N-S)
Level	Height (ft)	Story Force (k)	Overturning Moment (k-ft)
Pent	150.33	24.71	3714.56
Roof	129.17	100.74	13012.08
11 th	116.58	66.52	7754.86
10^{th}	104.00	58.15	6048.03
9 th	91.42	49.97	4567.88
8 th	78.83	42.22	3328.49
7 th	66.25	34.41	2279.67
6 th	53.67	26.86	1441.33
5 th	41.08	19.85	815.51
4 th	27.42	12.37	339.28
P6	16.75	6.34	106.27
	Totals	442.15	43407.95

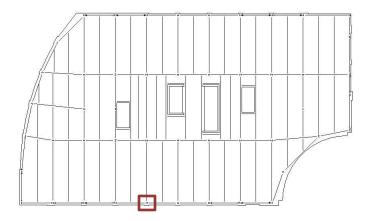
Connection Design

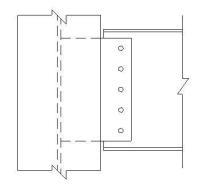
The design of the new steel system requires the investigation of member connections. In designing this aspect, constructability was of great concern. The following depicts some of the typical connections that were designed for the redesigned steel structure. Detailed calculation of these instances may be found in Appendix E.


Typical Beam-to-Girder Connection

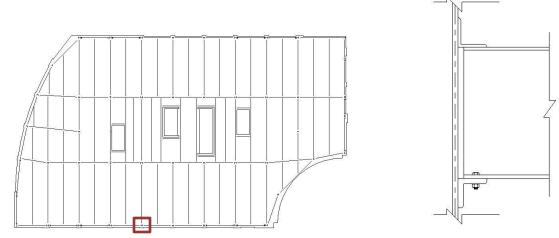

For this connection, a shear tab is employed. The simplicity of the connection and the option for shop welding of the tab will allow for ease in construction.

Typical Girder-to-Column Connection


This connection employs a shear tab which will be welded to the flange of the column. Once again, the simplicity of the connection and the option for shop welding of the tab will allow for ease in construction.



Typical Beam-to-Column Connection (Upper Levels)


This connection uses an extended shear tab to transfer loading. On the upper levels, the depth of the typical column section is not sufficient for the beam to frame closer to the column's web. Thus the extended tab allows for a connection that may bridge this confined space.

• Typical Beam-to-Column Connection (Lower Levels)

This connection uses an unstiffened seated connection to transfer loading. On the lower levels, the depth of the typical column section is sufficient for the beam to frame in close to the column's web. Thus the unstiffened seated connection becomes the preferred connection type due to its relatively simpler constructability.

Other Connections

Moment connections and base plate connections are also prevalent in this design. Detailed designs of these connections may be found in Appendix E of this document.

Architectural Study

Redesigning Rockville Metro Plaza II's structural system from concrete to steel obvious poses many architectural concerns. The original system possessed many advantages. The employment of post tensioned concrete in the gravity system allowed for wide and open floor plans. The use of post tensioning also allowed for a shallow floor depth with sufficient room to accommodate mechanical and electrical elements. The integration of concrete moment frames and shear walls in the lateral system allowed for a very efficient and economical outcome.

The architectural focus of the gravity system's redesign was to preserve the wide open floor plan of the office space. This aspect allows for a versatile area and thus may attract a wide array of potential tenants. In turn, the column layout was preserved and beam depths were minimized. The overall height of the building was still increased by approximately seven feet in order to maintain the original ceiling heights. Note this new height exceeds zoning regulations.

The architectural focus of the lateral system's redesign was to preserve the uninterrupted windows of the façade. This feature allows for an abundance of daylight to illuminate the office space as well as provides great views of the surrounding areas. The goal of retaining these elements eliminated the initial design of braced framed. Originally, it was sought to integrate the braces with the glass curtain walls which intermittently occur on the structure. This option would however inevitably prove expensive as the glass would have angles that would require special orders on an individual level. The next alternative investigated was the use of steel moment frames. This option allowed for the uninterrupted window pattern which was sought. A comparison of a corner office with and without the bracing may be viewed below. The redesigned system also retained to use of concrete shear walls at the core of the structure. Replacing these elements with braced frames was considered, but due to the location of the elevator core and its distance from the column grid pattern, it was reasoned otherwise. Since walls did not typically fall between column lines, the use of braced frames became further unsuitable.

Figure 28: Braced Frame Rendering

Figure 29: Moment Frame Rendering

Another architectural aspect investigated was the option of an opening in the floor plan of a lower office level for the construction of an architectural staircase. Such an aspect would more closely join two levels of the structure and create a more open and inviting feel if the space were to be used as a reception area. This feature could be sought by a tenant who would like the space of multiple floors to be shared in a more intimate manner than just the connection of the elevator core. In this architectural study, the lower level was furnished as a reception area and the upper area was arranged as a lounge/reception type space. The renderings on the following page display the architectural possibilities that accompany this layout option.

The architectural possibility of an opening was thoroughly investigated in the structural design of the building. For the purpose of this investigation, the opening was placed on the "5th floor" level. This essentially connects the 4th and 5th floor offices. Two options were developed for the opening: to either leave the center beam in its current span, or to redirect it as in the figure below. Due to architectural reasons and potential safety concerns of the chosen layout, the latter option was selected. Even though this requires deeper beams, it is postulated that large mechanical ductwork will not be placed in this section as determined from the MEP drawings. Both options are shown below. Also note that the option for the opening to be installed at a later time was also factored into the design of this feature and columns were sized accordingly.

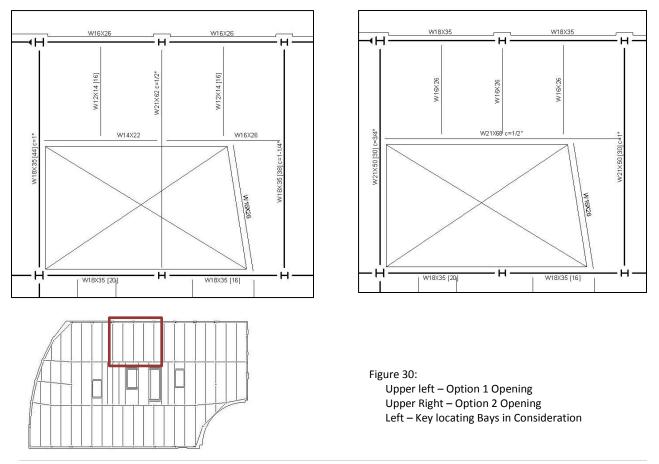


Figure 31: Rendering of Opening and Staircase from the 5th Floor

Figure 32: Rendering of Opening and Staircase from the 4th Floor

Figure 33: Rendering of Reception Area

Cost/Schedule Study

In order to compare the steel redesign with the original structure, a detailed cost estimate was conducted for each structural system. The items included in each system option are outlined in the tables below. It was concluded that the steel option would result in a slightly lower cost relative to the concrete option (approximately 5.5% less). Note that this only takes into account the structure above the seismic base (as the substructure was not included in the redesign).

The change in structural system also drastically effects the scheduling of construction. The steel system is projected to reduce the construction of the superstructure by 11 months. Summaries of these schedules are provided in Appendix F of this document. This is a logical reduction in time considering that steel is generally faster to erect and that concrete requires extra time for the construction of forms and rebar cages as well as time for curing. While the potential cost savings of the amendment were not fully investigated, it remains evident that at minimum, the steel alternate would potentially allow for the building to be constructed in a short time period.

		Steel Option Su	ummary	-	-
	Material	Labor	Equipment	Total	Tot. Incl O&P
Steel Deck	\$480,731.15	\$107,871.38	\$9,380.12	\$597,982.65	\$736,339.42
Welded Wire Fabric	\$34,002.94	\$53,935.69	\$0.00	\$87,938.63	\$126,631.62
Placing Concrete	\$0.00	\$55,342.71	\$17,064.00	\$72,406.71	\$107,610.82
Finishing Concrete	\$0.00	\$136,011.74	\$7,035.09	\$143,046.83	\$225,122.88
Concrete Topping	\$290,783.72	\$206,362.64	\$63,315.81	\$560,462.17	\$724,614.27
Steel Beams	\$1,635,720.87	\$270,638.34	\$77,920.05	\$1,984,279.25	\$2,379,232.78
Steel Columns	\$781,144.07	\$127,805.41	\$36,796.72	\$945,746.19	\$1,133,117.02
Shear Studs	\$8,441.44	\$13,265.12	\$7,537.00	\$29,243.56	\$41,754.98
Fireproofing Beams	\$84,381.30	\$98,710.20	\$14,328.90	\$197,420.40	\$267,472.80
Fireproofing Columns	\$45,199.24	\$49,719.16	\$7,156.55	\$102,074.95	\$138,234.34
Total	\$3,360,404.72	\$1,119,662.38	\$240,534.24	\$4,720,601.34	\$5,880,130.93

	Concrete Option Summary											
Material Labor Equipment Total Tot. Incl												
Concrete Formwork	\$502,426.15	\$1,634,629.69	\$0.00	\$2,137,055.84	\$3,237,060.29							
Structural Concrete	\$900,131.59	\$0.00	\$0.00	\$900,131.59	\$985,143.36							
Placing Concrete	\$0.00	\$230,177.47	\$87,713.87	\$317,891.34	\$470,352.93							
Finishing Concrete	\$3,182.12	\$185,401.23	\$6,915.09	\$195,498.45	\$306,404.66							
Reinforcing	\$493,131.92	\$414,983.46	\$1,718.58	\$909,833.96	\$1,226,880.19							
Total	\$1,898,871.79	\$2,465,191.86	\$96,347.54	\$4,460,411.18	\$6,225,841.43							

Redesign Summary

The structural focus for this investigation was founded on the academic question of whether Rockville Metro Plaza could be built as a steel framed structure rather than a concrete structure. To begin, the gravity system was redesigned, responding to the needs of architectural and mechanical concern. This proved the need to increase the height of the structure in order to retain the as designed ceiling heights and MEP space clearances. New moment frames, braced frames and shear walls were effectively designed as the lateral system of Rockville Metro Plaza II. While such a combination may not be realistic, this choice was made as an educational opportunity to investigate different configurations. A comprehensive study of the new steel design proved its viability as an alternative structural system.

As the structural focus was in progress, two auxiliary elements were studied. An architectural study provided the necessary background information used in assessing the impacts various lateral systems would potentially have on the building. When considering braced frames, the study yielded several concerns regarding the flow of internal space, views to the exterior, and building entrances. Thus, steel moment frames were employed in order to ameliorate these concerns. The pursuit of retaining the architectural intentions is accompanied by caveats. In retaining the designed ceiling height, the overall building height was increased by approximately eight feet. This places the top of the structure over the zoning restrictive limit. If a steel design such as this were to be competed in Rockville, this aspect would have to be amended.

A construction management study was also completed in order to assess the new structural design on the criteria of schedule and cost. The analysis showed a dramatic decrease in erection time of the reigned structural system relative to the original. In comparing the costs of each system, the steel system proved more efficient though the change was not as drastic as only a five percent decrease was calculated.

After these analyses were completed, it was determined that while there is potential for Rockville Metro Plaza II to be constructed in steel, real world concerns favor the concrete system. Regardless, the educational value of this project to those involved has been immeasurable.

Resources

International Building Code 2009

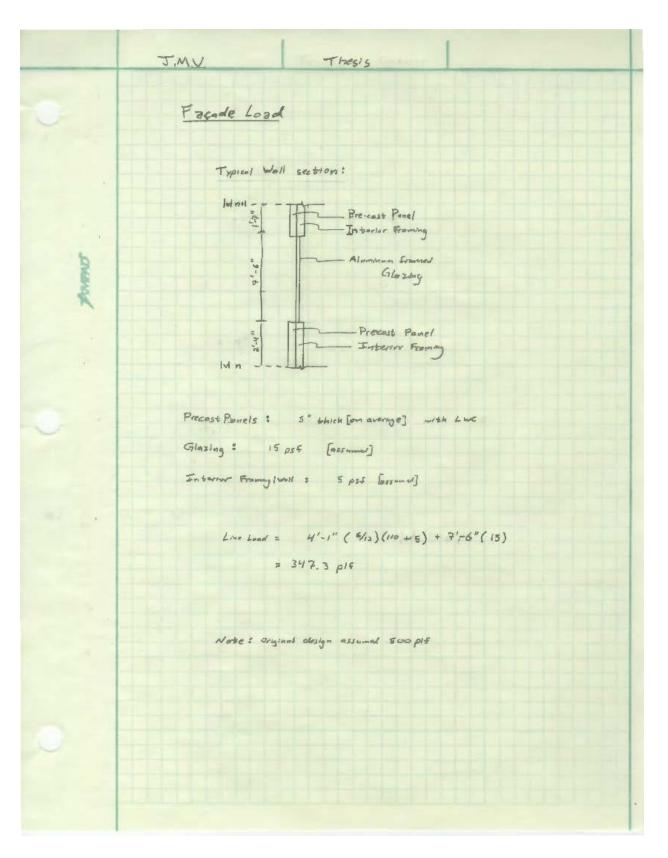
Minimum Design Loads for Buildings and Other Structures: ASCE 7-05

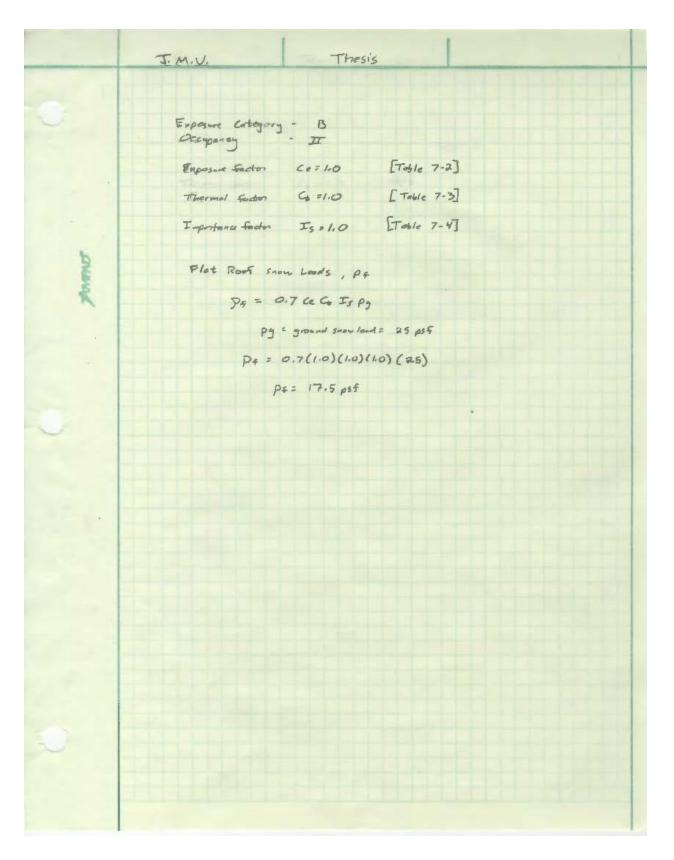
AISC Steel Construction Manual, Fourteenth Edition

ACI 318-11: Building Code Requirements for Structural Concrete and Commentary

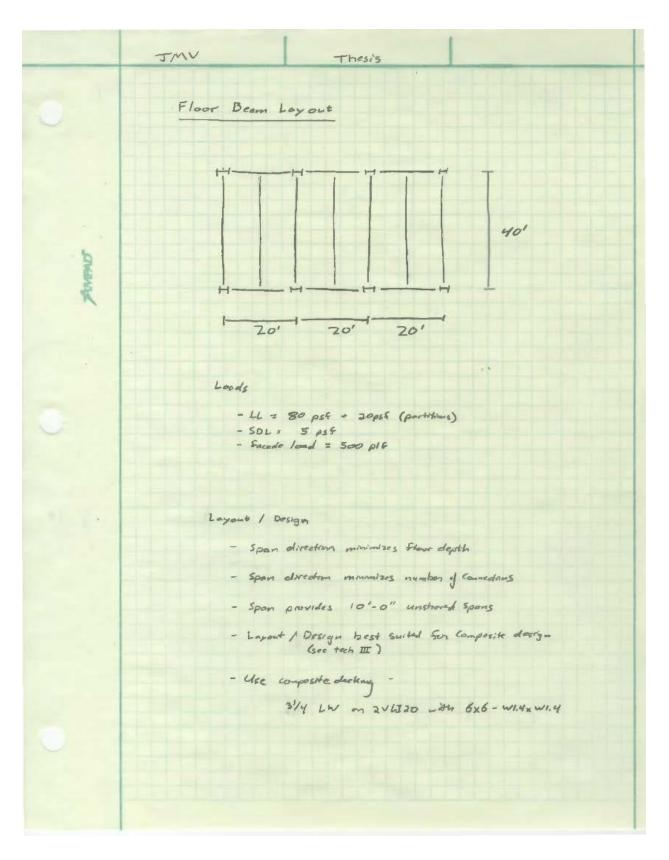
R.S. Means Building Construction Data, 2014

Unified Design of Steel Structures, Second Edition




Figure 34: Perspective of Rockville Metro Plaza II

Appendix A


Gravity Load Documentation

	and the second se	Thesis	
	Live Loads		
	Area	Designed (255)	ASCE 7-05 (05F)
	Corridors (1st lows)	100	100
	Corridor (above 1st)	100	
		100	80
	Lobbies	100	100
Parent'	Marques / Kanopies	75	75
R	Mech. Rooms	150 (0)	125
	Offices	80 + 20 (portion)	50 + 20 (pertonos)
	Parking goroge	50 *	40 *
	Retail - Frist Flow	100	100
	Stavs / Bestmass	100 W)	100
	Sturage (Light)	125 (U)	125
1.1	alotos i		
	(U) « con reducible		
	# = 50 pef is tru	ch/bus lond	
	where 40	pef is vehicular lood	
-			
2			
-			

J.M.V. Thesis Snow Droft Snow dansity 8= 0.13 pg +14 5 30 pef EE2 7-37 Height of Snow don't , had Leoward : ha = (3/4) [0.43 (10)" (P3+10)"4-115] [#3 7-9] Windword: hd = (3/4) [0.43 (14)"3 (ps+10) 44 - 1.5] [Sest 7.7.1] DIFFIND e 14 he he Value of "w" · if ha ≤ he : w= 4 ha • if ha > he : w= 4 ha / he Aren ha W 2.4' 9.6' a 4.0' 16' 6 c [2.7'] 15.7' [3.5'] 26.1' d

	JMV	Thesis
	Deck Comparison	-s Free construct. Lost Dots
1		
	Unprotected	Deck - composite
	- 3/4	LW on 2VLI20
		Superingeral LL - 142 pst
		Total thickness - 514"
		Topping thokness - 31/4"
		May Unshored Span - 10'-11"
9		Material Costs - \$3.85 1st
Dreavely		Lobor Costs - \$ 0.93/54
4		Material weight - 42 pst
N		Material Volume - 0.36 583/582
	- 412	"NW on 2VLT 19
		Super report LL = 193 psf
		Total thiskness - 612"
		Topping thiskness - 41/2"
		Max Unshored Spen - 10'-0"
		Material Costs = \$3.88/56
-		Lebor Losts - \$ 1,00/55
		Material Weight - 69 pst
		Metarial Volume = 0.46 Stalsta
	Sound Fib	or Deck - co-poorte
	- header	- wren unpener
	- 2 1/2"	LW on 24520
		Superingsoud 26 - 117 psf
- 10 A		Total thecherss - 4.875"
		Topping thickness - 2'5"
		Fire Arost + Welmess - 3/8" (2 22pcs)
		Max Unshord Spen - 11'-7"
		Material losts - \$4.27/36
		Labor Costs - \$ 1,62 / 55
		Material Weight - 33 psf
		Malorel Value - 0.28 653/652
	- 21/2"	NW on 2VLI20
		Supremposed LL - 112 pss
		Total threfeness - 4.875"
		Toppmy thickness - 21/2 "
		Fire Proof thiskness - 3/8" (223 pres)
		Max Unshared Span - 10'-7"
		Maturel Costs - \$ 4.12/55 .
		Labon Costs - \$1.64/85
		Moteral weight - 45 pet
		Matured Volume - 0.31 fil/fil

Groutby Check JMV Thesis Typical Growity Bearn Check ww = [1.2(42+5)(10) + 1.2(35) + 1.6 (20+124)(10)] = 1.924 MF 11 reductor = 0.25 + 13/1 200 = 78.0% Fy = Sowi WIB#35(22) beff= 2x [mm { 94/2 x12] = 240" 40x12/8] = 120" & controls S'c= 3 kesi Mu = - + + = 1.924 (40)2 = 354.5 Kip-1+ Max concentrated force = 0. 85 (3 mi) (120 in) (3.25") = 995 was Shed Strangton 2 17-1 KIDS per shed [65 Ks1, 3.5", 344 "diam] 2 Qm = (17.1)(1) = 188.1 Kins [11 shuds par side] anct = 500 = 186.1 anct = 60151 hay = 0.85(3)(120) = 0.615" 1. Y2 = 4.635 Consider toble 3-19 copacity = 395 KIP-St > 384.8 KIP-54 1. 04 - check unshared strongth : portp = 249 Kigo. 56 wa = 1.40 + 1.4 (42+5)(10) + 1.4(35) = 0.707 KIE ----= 1.20+1.66 = 1.2(+7/10)+1.2(35) + 1.6(20)(10) = 0.926 Kis - check not concrote deflection i are = 4240 = 2" W= = 42(10) + 35 = 455 plf awe = 50024 = 500 - 100 - sheak LL defloction : ALL = 1/360 = 11/3 " W11 = 62.6% (100 pil) (10) = 0.025 NIF Jers = 1249 ALL = 541 8718 = 550 (29000) (127) = 1.31 " < 1.33" 1.05 Summary: WIBX35(22) is adequate for the design

	53			<u>ravity I</u>	Beam Do	<u>esign</u>			
	RAM Steel	MP T Mo							3/14 14:57:4
	Building Co		- En Ca				Steel Co	ode: AISC	360-10 LRFI
Floor Typ	pe: Typical	Acense, IN		mber = 78					
SPAN IN	FORMATIO	ON (ft): 1	-End (50.0	0.0.00)	J-End (50	.00,40.00)			
	Size (User S			V18X35	(,	Fy =	50.0 ksi	
	Beam Lengt		= 4	0.00					
COMPOS	SITE PROP	ERTIES (Not Shore	ed):					
					Left		Right		
Deck	Label			Typical	Flooring	Typica	l Flooring		
	rete thicknes:	0.0			3.25		3.25		
	weight concr	ete (pcf)			115.00		115.00		
fc (ks					3.00		3.00		
	ing Orientati	on			endicular		pendicular		
	ing type			/ULCRAF			FT 2.0VL		
beff (· · · ·	=	120.0		bar(in)	=		.13	
	kip-ft)	=	569.0		n (kip-ft)		445		
C (kip			189.5 1249.7		JA (in)		15 1729	.17	
Ieff (i	length (in)	=	3.5		(in4) ud diam (ir	n) =		.41 .75	
	Capacity (kir			g = 1.00	Rp = 0.0	A	U	.15	
# of s		= 70	Partial =		ctual = 22				
	per of Stud R			000000 0000		ion = 36.80			
	A D.C. (1./64).				T				
Load	ADS (k/ft): Dist	DL	CDL	LL	Red%	Turno	PartL	CLL	
1 Load	0.000	0.427	0.427	0.000	Keu%	Type NonR	0.000	0.000	
1	40.000	0.427	0.427	0.000		NOIIIX	0.000	0.000	
2	0.000	0.050	0.000	0.800	22.0%	Red	0.200	0.200	
2	40.000	0.050	0.000	0.800	22.070	nou	0.200	0.200	
3	0.000	0.035	0.035	0.000		NonR	0.000	0.000	
	40.000	0.035	0.035	0.000			0.000	0.000	
HEAR (Ultimate):]	Max Vu (1	2DI +1 6	(11) = 380	57 kins 1	00Vn = 159	30 kins		
2				LL) - 30.0	улару п	00 V II - 107	50 Kips		
	TS (Ultimat		Combo	Max	Ø	T L	Cl	DL:	Phi*Mn
Span	Cond	Load	Combo	Mu kin ft	9	Lb ft	Cb	Phi	
Center	PreCmp	± 12D	L+1.6LL	kip-ft 175.0	20.0	0.0	1.00	0.90	kip-ft 249.37
Jenner	Init DL	1.4D		129.5			1.00	0.90	249.37
	Max +		L L+1.6LL	386.7				0.90	400.86
Controllin			L+1.6LL	386.7		12221		0.90	400.86
	-			200.7	2010				
XEAC III	ONS (kips):			Left	Right				
Initial	reaction			13.25	13.25				
	action			10.25	10.25				
III TA	+LL reaction			16.49	16.49				
	+total reaction			38.67	38.67				
Max -									
Max -									
Max - Max -	TIONS: (C	a <mark>mber =</mark> 1	-1/4)						
- Max Max DEFLEC Initial	TIONS: (C l load (in)	amber = 1	- 1/4) at	20.00 ft		1.801	L/D =	267	
Max - Max - DEFLEC Initial Live l	TIONS: (C l load (in) load (in)		at at	20.00 ft		1.310	L/D =	366	
Max - Max - DEFLEC Initial Live l Post (TIONS: (C l load (in)	n)	at		-				

JMU Theses Typical Growity Girder Check [WIBX35 selected for connection purposes] Pu=[1.2142+5+3.5]+1.6(20+62.4)(10)+1.2(40)]20 P4 = 39.45 Kps 18×35 LL rod = 0.25 + 15/1000 = 78% (12" over hang) Py = 5 Kips @ 1.5' from eacherd (forced) CIVEND 1.2×8 = 6K.05 Note controlmy load combo : 1.20+1.61 Vu= 39.45/2 + 6 + (20') (1.6x 100+ 1.2 [5+35+42] = 29.69 Wip Mu = (39.15)(10') + (6)(1.5') + (1.6x100 +1.2[\$1])(20)2 = 219.17 x/2-5+ OMP = 249 Kips- ft 000 = 159 Mps strength: or vo > Vo & demp > Mu to be $\Delta_{LL} = \frac{5(100)(20)^{4}(12)^{3}}{384(28000)(500)} + \frac{(81.4820)(20)^{3}(12)^{3}}{46(28000)(500)} = 0.35''$ 041 = \$1360 = 20x12/260 = 2/3" servicibility : ALL < Au allowed in pk Summary : w18x35 is adequate for design

				G	<u>ravity B</u>	eam De	esign			
RAM	DataBas Building	; Code: I	T Mode BC	l walled		Tree		Steel C		/25/14 13:01:3 C 360-10 LRFI
Floor Typ	e: Typic	cal			<mark>nmercial U</mark> mber = 58					
	Size (Oj Beam Le	otimum) ength (ft)	<u>8</u> 1		V18X35) J-End	(120.00,12	2	= 50.0 ksi	
POINT LO Dist 10.000 18.500 1.500		kips): RedLL 15.20	Red% 1.2	NonRL 0.(RoofLL 0.00	Red% 0.0	PartL 3.80	
LINE LO	ADS (k/	ft):								
Load	Dist	107	DL	LL	Red%	Туре	PartL			
1	0.000	C POLICE		0.000		NonR	0.000			
1555	20.000			0.000	5531 1380 NS		0.000			
2	0.000			0.067	1.2%	Red	0.017			
	20.000			0.067			0.017			
3	0.000			0.000		NonR	0.000			
	20.000			0.000			0.000			
2		0	Vu (1.2	DL+1.6	LL) = 29.1	2 kips 1.0	00Vn = 159	9.30 Kips		
MOMENT	1 million		1 10			0	T 1	C1	101	D1 '+1 (
Span	Con	a	LoadCo	ombo	Mu	@	Lb	Cb	Phi	Phi*Mn
Classification	Max	. n	1.2DL+	1 41 1	kip-ft 229.1	ft 10.0	ft 10.0	1 60	0.00	kip-ft 249.37
Center Controlling		(†	1.2DL-		229.1	10.0	10.0	1.60 1.60	0.90 0.90	249.37
			1.200		229.1	10.0	10.0	1.00	0.90	249.57
REACTIO	JNS (kij	ps):			Left	Right				
DL rea	action					10.62				
22550 C 100	LL reac	tion				10.24				
		etion (fa	ctored)			29.12				
DEFLECT	TIONS:									
	oad (in)			at	10.00 ft	-	0.251	L/D =	955	
	oad (in)			at	10.00 ft		0.387	L/D =	621	
	otal load	1		at	10.00 ft		0.638	L/D =	376	

JMU	Thesis	Growing Check								
Typical	Butan Gardes Check									
Ne-belt-	Pu= [1.2(42+5+3.5)10.	+1.6(20+62.4)(10) +1,2(40)](00)								
		= 39.45 kigs								
26	(14) Pe = 5 Hips @ 1 1.2x5 = 6	15' brown worth and (Suscaple) hips								
Mu= 208.6 Kip-ft (Rite 20 anth)	1943) beg ={;	492 × 12 + 10 + 250' 10 × 12/6 + 10 = 40" & confinits								
May Concorde Sonce =										
Stud Strong the = 17.1 W	stud sensitive 17.1 Kaps par stud [65 ksi, 3.5 m, 3/4" adiamata]									
Rant & Elim	by = 1127 0.89(3)(40) = 1.17"	- 10+ Y2 = 4.66 *								
Conside Toble 3-19	: coppering = kip-st	> 208.2 140.66 es								
-check unshared strangets 1 gl Mp = 166 kip-54										
		6 Rp.5+ 1. <u>ak</u>								
- chok wit courses of	fledown : awe z 4240 z 1ª									
		(24000) (301) = 0. 31" < 1" 1. <u>oh</u>								
		SEN For monorphism - water 8-207								
Summary : W16	426 (14) is adopude Su	- alaray-								

	$K = best$ $Mu = 208.6 Kip + 4$ (Rite 20 and) $Mu = 208.6 Kip + 4$ (Rite 20 and) $Mu = 208.6 Kip + 4$ (Rite 20 and) $Mu = 208.6 Kip + 4$ (Rite 20 and) $Mu = 208.6 Kip + 4$ (Rite 20 and) $E R_{1} = (17.1) (10)$ $E R_{1} = (17.1) (10)$ $E R_{1} = (17.1) (10)$ $Rat = \frac{E R_{1}}{0.855}$ $E R_{1} = \frac{E R_{1}}{0.855}$ $Can eiden Table 3-19$ LAD LAD LAD LAD LAD LAD $Lad = \frac{E}{10}$ $ALL = \frac{E}{10}$	$F_{ant} = \frac{1}{\sqrt{2}} \int f_{ant} = \frac{1}{\sqrt{2}}$								

DAR	RAM Ste			20					04	1/10/14 1	6.16.07
	Building		T Model : IBC	32				Steel C	U. ode: AIS	2/20/14 1 SC 360-1	
Floor Ty	Academ	ic Licer	nse. Not F	' <mark>or Comn</mark> am Numl	nercial Us	e.					3
SPAN IN						J-End (1	20 00 12	0.00			
Beam	i Size (Us Beam Le	er Selec	cted)	= W1 = 20.0	6X26	o Ena (1	20:00,12		= 50.0 ks	și.	
COMPOS	SITE PR	OPER?	TIES (Not	t Shored)	:						
Deck	Label			,	Typical Fl	Left	Typic	Righ al Flooring			
	rete thick	ness (in	i)		i ypiedi i i	3.25	rypre	3.25			
Unity	weight co:	ncrete ((pcf)]	115.00		115.00)		
fc (ks						3.00		3.00			
	ing Orient	tation		3711	p LCRAFT	arallel		paralle			
beff (ing type in)		=	40.00	Y ba:		VULCK	AFT 2.0VI	4.34		
	kip-ft)		=	351.14		kip-ft)	=		7.64		
C (kij	3 😓 🔅		=	123.78	PNA		=	12	2.80		
Ieff (i			=	655.77	Itr (ii		=		1.59		
	length (in		=	3.50		diam (in))=	(0.75		
# of s		(kips) Full =	Qn = 17.	/ Rg = artial = 2(Rp = 0.75 1al = 14					
	per of Stu					osite Action	n = 37.34	l			
POINT L					I						
Dist	DL	-	RedLL	Red%	NonRL L	StorLL	Red%	RoofLL	Red%	PartL	CLL
10.000	9.73	8.78	15.20	1.2	0.00	0.00	0.0	0.00	0.0	3.80	3.80
18.500	5.00	0.00									
1.500	5.00	0.00									
LINE LO	ADS (k/f	ft):									
Load	Dist			CDL	LL	Red%	Туре	PartL	CL		
1	0.000			.036	0.000		NonR	0.000	0.00		
2	20.000			.036	0.000 0.067	1.2%	Red	$\begin{array}{c} 0.000\\ 0.017\end{array}$	0.00		
2	20.000			.000	0.067	1.270	Reu	0.017	0.01		
3	0.000			.026	0.000	1222	NonR	0.000	0.00		
	20.000	0.0	026 0	.026	0.000			0.000	0.00)0	
SHEAR (Ultimate): Max	x Vu (1.2E	L+1.6LL	.) = 29.02	kips 0.90	Vn = 105	5.97 kips			
MOMEN				8 2 5 1				50.00 ·			
Span	Conc	1	LoadCor	nbo	Mu Irin ft	@	Lb of	Cb	Phi	Phi*	
Center	PreC	mn+	1.2DL+1	6L I	kip-ft 88.2	ft 10.0	ft 10.0	1.64	0.90	кц 165	p-ft 75
Contor	Init I	NUCLES CONTRACTOR OF STREET	1.4DL	.011	65.8	10.0			0.20	105	.15
	Max		1.2DL+1	.6LL	228.5	10.0			0.90	258	.88
Controllin	ıg		1.2DL+1	.6LL	228.5	10.0			0.90	258	.88
EACTION	S (kips):										
7 4				Left	-						
Initial react				7.08 10.53	7.08 10.53						
	L reaction	ß		10.55	10.32						
	tal reactio		ored)	29.02	29.02						
Max +to	ONS.										
Max +to EFLECTIO			at	10.0	00 ft =	-0.315	I	L/D =	761		
	ad (in)		at at		00 ft = 00 ft =	-0.315 -0.301		L/D = L/D =	761 798		
Max +tot EFLECTIC Initial los Live load Post Con	ad (in)			10.0 10.0]]				59 1

JMU Thesis Column Spot Checks Column at Grid C-3, Level 1 (Interior Column) Pu = 928 kips AISC Table 4-1 : 17' unbraced largeth Use WI2×120 -> gPn= 1160 Kips > 928 Kips : ok Summary: W12×120 is adopuste for design MARINO Column at Cariad F-1, Level 3 (estation Column) Pu = 580 kps Muy = 9.82 kpH Mux = 2.82 kpH check 12 x 65 [Table 6-1] 14' unbrased length, P= 1.46 × 10-3 by = 5.53 x03 by = 2.58 x103 PPu = 1.46 x10 (500) = 0.847 2 0.2 : Equation H1-10 applies pPu + bx Mrs + by Mry 4 1.0 0. 847 + (2.82)(2.58×10-3) + (4.82)(5.63×10-5) = 0.908 \$ 1.0 = ok summary : W12×65 is adequate for design

<u>Gravity Column Design</u>

	eel v14.05.0 e: RMP T M					Page 2/ 02/20/14 19:30:5
		0del 42			Ctral Crater	
	Code: IBC				Steel Code: A	AISC 360-10 LRF
tory level Garage			imercial Use.			
Fy (ksi)		50.00	Column Size		= W12X1	20
Orientation (de			Column Size		- w12A1	.20
Onentation (de	g.) –	0.0				
NPUT DESIGN I	PARAMET	ERS:				
			X-Axi		Y-Axis	
Lu (ft)				5	16.75	
К				1	1	
Braced Agains		slation	Ye	s	Yes	
Column Eccen	tricity (in)		9.0	5	8.65	
		Bottor	n 0.0	0	0.00	
ONTROLLING	COLUMN	LOADS - Sk	ip-Load Case 1:			
			Dea	d	Live	Roof
Axial (kip)			380.0	2	294.94	0.00
	op Mx (kip	-ft)	0.83	8	0.31	0.00
			1.62	2	0.56	0.00
I	Bot Mx (kir	p-ft)	0.0	0	0.00	0.00
	Mv (kin	p-ft)	0.0	0	0.00	0.00
	> (1					
Single curvatu	e about X-A	Axis				
Single curvatu	e about Y-A	Axis				
-						
ALCULATED P	ARAMETI	FRS: (1.2D)	L + 1.6LL + 0.5RF)			
Pu (kip)		927.92		=	1174.14	
Mux (kip-ft)		1.55	0.90*Mnx (kip-ft)			
Mux (kip-ft) Muy (kip-ft)		2.84	0.90*Mny (kip-ft)		320.25	
may (mp II)		2.04	0.50 mily (mp-il)		520.25	
Rm		1.00				
	=	1.67				
			Const	-	0.60	
Cbx	=	0.60	L HIN			
Cbx Cmx		0.60 580 35	Cmy Pey (kin)		(H. (H. H. (H. (H. (H. (H. (H. (H. (H. (
Cbx		0.60 580.35 1.00	Pey (kip) B1y	=	2444.13	

INTERACTION EQUATION

Gravity Column Design

RAN DataBase	el v14.05.03 :: RMP T M					Page 02/20/14 19:3	37:30	
	Code: IBC			Steel Code: AISC 360-10 L				
Story level Office :	th Floor. (olumn Lin	nmercial Use. e F-1					
Fy (ksi)		50.00	Column Size		= W12X0	55		
Orientation (de	8		Column bizo		111211			
INPUT DESIGN F	ARAMETI	ERS:						
			X-A		Y-Axis			
Lu (ft)			13	.67	13.67			
K				1	1			
Braced Against				Yes	Yes			
Column Eccent	ricity (in)	Тор		.55	8.50			
		Botto	m 8	.55	8.50			
CONTROLLING	COLUMN	LOADS - SI	-	ead	Live	Roof		
Axial (kip)			274		156.73	0.00		
			12 000000000	.00	0.00	0.00		
Woments 1				.48	-3.53	0.00		
Т	Ny (Kip Rot My (kin	-1() _ft)		.40	1.76	0.00		
ι.				.18	0.00	0.00		
	m) (mp				0100	0100		
Single curvatur								
Reverse curvat	ure about Y-	Axis						
CALCIII ATED D	ADAMETE	DS. (1.1D)	L + 1.6LL + 0.5RF)					
Pu (kip)		579.74	0.90*Pn (kip)	=	692.55			
Mux (kip-ft)		2.82	0.90*Mnx (kip-ft)		356.22			
Mux (kip-ft) Muy (kip-ft)	=	2.82 9.82	0.90*Mnx (kip-ft) 0.90*Mny (kip-ft)		160.81			
may (mp-n)	- 1999 I	2.02	0.20 mily (Mp-II)		100.01			
Rm		1.00						
Cbx	=	1.67						
Cmx	=	0.60	Cmy	=	0.44			
Pex (kip)	= 50	569.25	Pey (kip)	=	1850.75			
B1x	=	1.00	Bly	=	1.00			

INTERACTION EQUATION

Pu/0.90*Pn = 0.837Eq H1-1a: 0.837 + 0.007 + 0.054 = 0.898 John Vais

JMU Thesis Redesign - Fire Prosting [2Hr, Rating: 34" - 1"] Average WIBK55 for beams Surface Area = 4+ 18+ 4+8+4+18+4 = 60* 13" 50 "/12" = 5' - 556 por lineal stor of beam Total length of beams = 31842 St 31268 (5) = 159,210 sf fire proofing on beams Average w12x79 for column [3Hr Roting: 23/16"] 12.4^{n} Surface and $z = 2(12.4) + 4(12.1) = 73.2^{n}$ >++1/12" = 6,2' = 6.2, 55 per limest staf column 12.11 Tobal length of column = 6075 50 6075 (6.2) = 37660 st fire provery on beams Total Area of Fire Processing Regioned = 196, 876 st [Note: Doch med not be sprayed]

Appendix B

Wind Loading Calculations

	J.M.V. Thesis
	Calculation For Wind Analysis
1.000	ASCE 9.05 +
	Method 2 -> Building Meets reg 6.5.1
	Basic Wind Speed
	Rackville, MD V = 90 mph [Fig. 6-1]
20	Directionality Factor
Mark	Kel = 0.85 [Toble 6-4]
	Importance Factor
	In = 1.0 [Tolde 6-1]
	Exposure Cotegory : B
	Topographic Factor
-	$W_{24} = 1.0$ [Sect. 6.5.7]
	Debermine Velocity Pressure Exposure Coefficient
19.2	Kz, Kn -> See coic toobles for volves [Table 6-3]
	Determine Valucity Pressures
	82, 94 = 0.00256 K2 K26 Ka V2 [Eq. 6-15]
	Debermme Building Enclosure : Fully Enclosed [Sect. 6.5.9]
	G Con = +1.5 under
	G Cpn > -1.0 becaused [Ez 6.20]
1	Combined New Dosign Prossure (Internal Prossure)
	Pi = q h G Cp; "> see cale tables for values [sect. 6.5.11.1] Determine Pressure coefficients
0	김 김 의원은 유민이는 것이 가지가 같은 것과 한 것은 지지 것 않았다. 것 한 것 가 것 같이 나는 것 같이 하는 것 같이 나는 것 같이 않는 것 같이 나는 것 같이 않는 것 같이 나는 것 같이 않는 것 같이 않는 것 같이 나는 것 같이 않는 것 같이 않는 것 같이 나는 것 같이 않는
	$C_{p} = 0.8 \text{ (induced)}, -0.5(\text{leaverd})$ [Fig 6-6] $G_{c_{p}} = \pm 0.18$ [Fig 6-5]

1			
	Determine Gust Ef	fect Factor	[Sect 6.5.8]
	6= 0.925 (-	$\frac{(1+1.7I_{2}\sqrt{g_{8}^{3}}Q^{5}+g_{8}^{4}R^{2})}{(1+1.7g_{7}I_{2})}$	[Eg 6-8]
	Iz= c (3	3/2) 16	[2 6-5]
-	$Q = \sqrt{\frac{1+0}{1+0}}$	$\frac{1}{63} \left(\frac{\overline{B}+h}{L_2}\right)^{6.65}$	[Eg 6-6]
5	L2 = l (2.	/10) ^č	[Eq 6-7]
CINE I	$\overline{v}_z = \overline{b} (z/a)$	3) ² V(8%60)	[Eq 6-14]
	$N_{i} = (n, L_{\overline{2}})$)/(V _ī)	[Eg 6-12]
a	Rn = 7.47 N	(1+10.3N,) 5/3	[Eg 6-11]
	Re= 1/2 - 1	1222 (1-e-27)	[Eq 6-13a]
	Re = Rh	fn 7 = 4.6 n, h / Vz	
	Re= RB	$s_n \gamma_1 = 4.6n, EB/\tilde{v}_2$	
	Re= Re	for n= 15H n, L/Jz	
	$R = \sqrt{(\gamma_{\beta})R}$	Rh Ro (0.53 + 0.47 R.)	[EE 6-10]
	П, (аррты) =	100/14	[Eg (6-17]
	$g_R = \sqrt{2 \ln(3)}$	600 n,)+ 0.577/(Valn(3,600n,))	[Eg 6-9]
	90 = 3v = 3-	4	[Sect 6.5.8.2]
	Note building is	considered flemible by cost i	6.2
	Determine Design	, wind Pressures	
	Windword : I	$P_2 = g_2 G_1 C_p - g_4 (G_1 G_p;)$	[Eg 6-19]
	Leaward s 1	$D_h = g_h G_i C_p - g_h (G_i C_p i)$	[Ez 6-19]
	See colc	tables for results	

Wind: East-West Direction

Table 18: East-West Design Factors				
Exposure B				
Case 2				
L	120 ft			
В	210 ft			
L/B	0.571			
Natural Period (approx.) (n ₁)	0.833			
Damping Coeff. (approx.) (β)	0.02			
Basic Wind Speed (V)	90 mph			
Wind Directionality Factor (K_d)	0.85			
Importance Factor (I)	1.0			
Exposure Category	В			
Topographical Factor (K _{zt})	1.0			
Gust Effect Factor (G)	0.825			
C _p Windward	0.8			
C _p Leeward	-0.5			
G _{cpi} Windward	0.18			
G _{cpi} Leeward	-0.18			
G _{pn} Windward	1.5			
G _{pn} Leeward	-1.0			

Table 19: East-West Calculation of Design Pressures								
	Height	K _z , K _h	q _z , q _h	External Pressure	Internal Pressure	Net Positive	Net Negative	Total Pressure
	(ft)			(psf)	(psf)	(psf)	(psf)	(psf)
Penthouse	150.33	1.11	19.57	12.92	3.52	9.39	16.44	20.64
	139.75	1.09	19.17	12.65	3.52	9.13	16.17	20.38
Main Roof	129.17	1.06	18.74	12.37	3.52	8.84	15.89	20.09
	122.88	1.05	18.47	12.19	3.52	8.67	15.71	19.92
11th	116.58	1.03	18.20	12.01	3.52	8.49	15.53	19.74
	110.29	1.02	17.91	11.82	3.52	8.30	15.34	19.55
10th	104.00	1.00	17.61	11.62	3.52	8.10	15.15	19.35
	97.71	0.98	17.30	11.42	3.52	7.90	14.94	19.15
9th	91.42	0.96	16.98	11.20	3.52	7.68	14.73	18.93
	85.13	0.94	16.63	10.98	3.52	7.46	14.50	18.71
8th	78.83	0.92	16.27	10.74	3.52	7.22	14.26	18.47
	72.54	0.90	15.89	10.49	3.52	6.97	14.01	18.21
7th	66.25	0.88	15.49	10.22	3.52	6.70	13.74	17.95
	59.96	0.85	15.05	9.93	3.52	6.41	13.45	17.66
6th	53.67	0.83	14.58	9.62	3.52	6.10	13.15	17.35
	47.38	0.80	14.07	9.29	3.52	5.76	12.81	17.01
5th	41.08	0.77	13.51	8.92	3.52	5.39	12.44	16.64
	34.25	0.73	12.82	8.46	3.52	4.94	11.99	16.19
4th	27.42	0.68	12.03	7.94	3.52	4.42	11.46	15.67
	22.08	0.64	11.31	7.47	3.52	3.94	10.99	15.19
P6	16.75	0.59	10.45	6.90	3.52	3.38	10.42	14.63
	8.38	0.57	10.05	6.63	3.52	3.11	10.15	14.36
Plaza Level	0.00	0.57	10.05	6.63	3.52	3.11	10.15	14.36
Leeward	129	1.06	18.73	-7.73	3.52	-11.25	-4.20	-

Table 20: East-West Design Pressures							
	Height	Windward Pressure	Leeward Pressure	Total Pressure	Total Force	Story Shear	Moment Windward
	(ft)	(psf)	(psf)	(psf)	(kips)	(kips)	(k-ft)
Penthouse	150.33	12.92	-7.73	20.64	29.49	29.49	4433.68
	139.75	12.65	-7.73	20.38			
Main Roof	129.17	12.37	-7.73	20.09	61.58	91.07	7953.77
	122.88	12.19	-7.73	19.92			
11th	116.58	12.01	-7.73	19.74	51.91	142.98	6051.35
	110.29	11.82	-7.73	19.55			
10th	104.00	11.62	-7.73	19.35	50.86	193.84	5289.95
	97.71	11.42	-7.73	19.15			
9th	91.42	11.20	-7.73	18.93	49.73	243.57	4545.84
	85.13	10.98	-7.73	18.71			
8th	78.83	10.74	-7.73	18.47	48.47	292.03	3820.68
	72.54	10.49	-7.73	18.21			
7th	66.25	10.22	-7.73	17.95	47.04	339.08	3116.62
	59.96	9.93	-7.73	17.66			
6th	53.67	9.62	-7.73	17.35	45.40	384.48	2436.49
	47.38	9.29	-7.73	17.01			
5th	41.08	8.92	-7.73	16.64	45.22	429.70	1857.86
	34.25	8.46	-7.73	16.19			
4th	27.42	7.94	-7.73	15.67	39.50	469.20	1083.00
	22.08	7.47	-7.73	15.19			
P6	16.75	6.90	-7.73	14.63	41.63	510.83	697.33
	8.38	6.63	-7.73	14.36			
Plaza Level	0.00	6.63	-7.73	14.36	25.25	536.08	0.00
							41286.57

Base Shear	536.08 Kips
Overturning Moment	41286.57 Kip-ft

Wind: North-South Direction

r.

Table 21: North-South Design Factors				
Exposure B				
Case 2				
L	210 ft			
В	120 ft			
L/B	1.75			
Natural Period (approx.) (n ₁)	0.833			
Damping Coeff. (approx.) (β)	0.02			
Basic Wind Speed (V)	90 mph			
Wind Directionality Factor (K _d)	0.85			
Importance Factor (I)	1.0			
Exposure Category	В			
Topographical Factor (K _{zt})	1.0			
Gust Effect Factor (G)	0.845			
C _p Windward	0.8			
C _p Leeward	-0.5			
G _{cpi} Windward	0.18			
G _{cpi} Leeward	-0.18			
G _{pn} Windward	1.5			
G _{pn} Leeward	-1.0			

Table 22: North-South Calculation of Design Pressures								
	Height	K _z , K _h	q _z , q _h	External Pressure	Internal Pressure	Net Positive	Net Negative	Total Pressure
	(ft)			(psf)	(psf)	(psf)	(psf)	(psf)
Penthouse	150.33	1.11	19.57	13.23	3.52	9.70	16.75	18.77
	139.75	1.09	19.17	12.95	3.52	9.43	16.48	18.49
Main Roof	129.17	1.06	18.74	12.67	3.52	9.14	16.19	18.21
	122.88	1.05	18.47	12.49	3.52	8.96	16.01	18.03
11th	116.58	1.03	18.20	12.30	3.52	8.78	15.82	17.84
	110.29	1.02	17.91	12.11	3.52	8.58	15.63	17.65
10th	104.00	1.00	17.61	11.90	3.52	8.38	15.43	17.45
	97.71	0.98	17.30	11.69	3.52	8.17	15.22	17.24
9th	91.42	0.96	16.98	11.47	3.52	7.95	15.00	17.01
	85.13	0.94	16.63	11.24	3.52	7.72	14.77	16.78
8th	78.83	0.92	16.27	11.00	3.52	7.48	14.52	16.54
	72.54	0.90	15.89	10.74	3.52	7.22	14.26	16.28
7th	66.25	0.88	15.49	10.47	3.52	6.94	13.99	16.01
	59.96	0.85	15.05	10.17	3.52	6.65	13.69	15.71
6th	53.67	0.83	14.58	9.85	3.52	6.33	13.38	15.40
	47.38	0.80	14.07	9.51	3.52	5.99	13.03	15.05
5th	41.08	0.77	13.51	9.13	3.52	5.61	12.65	14.67
	34.25	0.73	12.82	8.67	3.52	5.14	12.19	14.21
4th	27.42	0.68	12.03	8.13	3.52	4.61	11.66	13.67
	22.08	0.64	11.31	7.65	3.52	4.12	11.17	13.19
P6	16.75	0.59	10.45	7.07	3.52	3.54	10.59	12.61
	8.38	0.57	10.05	6.79	3.52	3.27	10.31	12.33
Plaza Level	0.00	0.57	10.05	6.79	3.52	3.27	10.31	12.33
Leeward	129	1.06	18.74	-5.54	3.52	-9.06	-2.02	-

	Table 23: North-South Design Pressures						
	Height	Windward Pressure	Leeward Pressure	Total Pressure	Total Force	Story Shear	Moment Windward
	(ft)	(psf)	(psf)	(psf)	(kips)	(kips)	(kip-ft)
Penthouse	150.33	13.23	-5.54	18.77	10.33	10.33	1552.67
	139.75	12.95	-5.54	18.49			
Main Roof	129.17	12.67	-5.54	18.21	29.02	39.35	3748.32
	122.88	12.49	-5.54	18.03			
11th	116.58	12.30	-5.54	17.84	26.79	66.14	3123.62
	110.29	12.11	-5.54	17.65			
10th	104.00	11.90	-5.54	17.45	26.18	92.32	2723.13
	97.71	11.69	-5.54	17.24			
9th	91.42	11.47	-5.54	17.01	25.52	117.84	2332.75
	85.13	11.24	-5.54	16.78			
8th	78.83	11.00	-5.54	16.54	24.78	142.62	1953.47
	72.54	10.74	-5.54	16.28			
7th	66.25	10.47	-5.54	16.01	23.95	166.57	1586.53
	59.96	10.17	-5.54	15.71			
6th	53.67	9.85	-5.54	15.40	22.99	189.56	1233.60
	47.38	9.51	-5.54	15.05			
5th	41.08	9.13	-5.54	14.67	22.73	212.28	933.72
	34.25	8.67	-5.54	14.21			
4th	27.42	8.13	-5.54	13.67	19.65	231.94	538.81
	22.08	7.65	-5.54	13.19			
P6	16.75	7.07	-5.54	12.61	20.46	252.40	342.72
	8.38	6.79	-5.54	12.33			
Plaza Level	0.00	6.79	-5.54	12.33	12.39	264.79	0.00
							20069.35

Base Shear	264.79 Kips
Overturning Moment	20069.35 Kip-ft

Appendix C

Seismic Loading Calculations

Level Self Weight

Table 24: Penthouse Roof Weight					
Item	Design Weight (kips)				
Beams	22.4				
Columns	5.6				
Slab	164				
Roofing	156				
SDL	39				
Shear Wall	60				
Façade	103.5				
Total	550.5				

Table 25: Main Roof Weight					
Item	Design Weight (kips)				
Beams	102				
Slab	1144.4				
Columns	49.5				
Roofing	728.1				
Shear Wall	217.7				
Equipment	52.8				
SDL	221				
Façade	167.6				
Total	2683.1				

Table 26: Office (11th) Weight					
Item	Design Weight (kips)				
Beams	106.1				
Slab	1144.4				
Columns	41.2				
Shear Wall	154.7				
Partitions	194.6				
Equipment	23.7				
SDL	110.5				
Façade	223.5				
Total	1998.7				

Table 27: Office (4th) Weight					
Item	Design Weight (kips)				
Beams	106.1				
Slab	1144.4				
Columns	62.8				
Shear Wall	161.4				
Partitions	204.2				
Equipment	23.7				
SDL	115.3				
Façade	223.5				
Total	2041.3				

Table 28: P6 Level Weight					
Item	Design Weight (kips)				
Beams	100.7				
Slab	1144.4				
Columns	70.8				
Shear Wall	126				
Equipment	2.2				
SDL	124.5				
Façade	300.0				
Total	1868.6				

Seismic Calculations

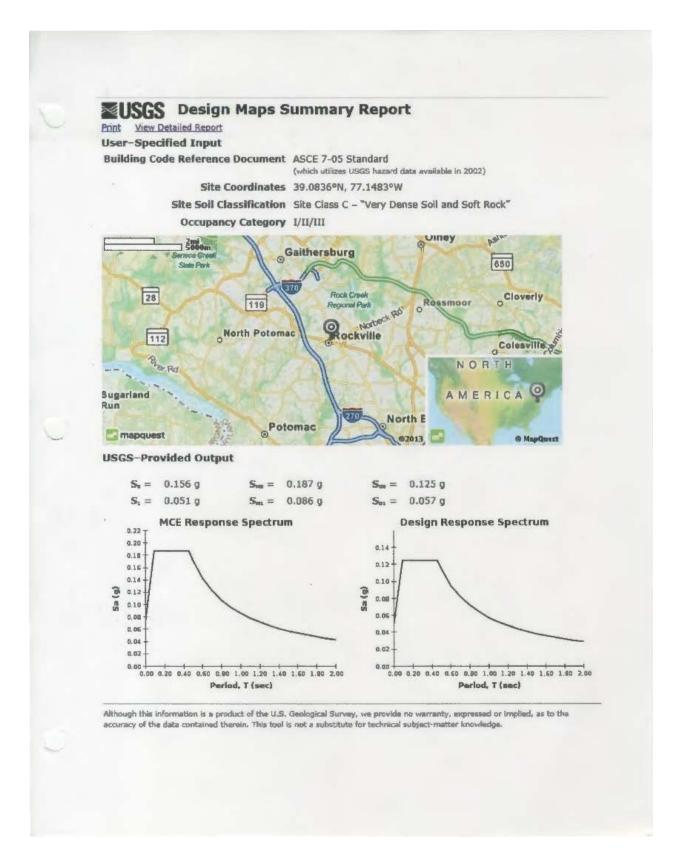

Table 29: Seismic Calculations East - West							
Level	Story Weight	Height	w _x h _x ^k	C _{vx}	Forces (F _x)	Story Shear (V _x)	Moments (M _x)
	(kips)	(ft)			(kips)	(kips)	(k-ft)
Pent Roof	551	150.33	200447.3	0.06	26.8	26.8	4024.104
Main Roof	2683	129.17	817230.5	0.23	109.1	135.9	14096.42
11th Floor	1999	116.58	539617.3	0.15	72.1	208.0	8401.099
10th Floor	1999	104.00	471768.8	0.13	63.0	271.0	6552.037
9th Floor	1999	91.42	405356.8	0.11	54.1	325.1	4948.535
8th Floor	2010	78.83	342519.6	0.10	45.7	370.8	3605.862
7th Floor	2010	66.25	279147.4	0.08	37.3	408.1	2469.638
6th Floor	2010	53.67	217875.6	0.06	29.1	437.2	1561.446
5th Floor	2035	41.08	161031.3	0.04	21.5	458.7	883.4656
4th Floor	2041	27.42	100389.8	0.03	13.4	472.1	367.5514
P6	1869	16.75	51467.7	0.01	6.9	479.0	115.1233
Plaza Level	-	0.00	-	-	-	-	-
Total	21205	-	3586852.03	1.00	479.0	-	47025.28

Table 30: Design Values					
Effective Seismic Weight	21205 kips				
Base Shear	479.0 kips				
Overturning Moment	47025.3 kips-ft				

Seismic Calculations

Table 31: Seismic Calculations North - South							
Level	Story Weight	Height	w _x h _x ^k	C _{vx}	Forces (F _x)	Story Shear (V _x)	Moments (M _x)
	(kips)	(ft)			(kips)	(kips)	(k-ft)
Pent Roof	551	150.33	200447.3	0.06	24.7	24.7	3714.558
Main Roof	2683	129.17	817230.5	0.23	100.7	125.4	13012.08
11th Floor	1999	116.58	539617.3	0.15	66.5	192.0	7754.861
10th Floor	1999	104.00	471768.8	0.13	58.2	250.1	6048.034
9th Floor	1999	91.42	405356.8	0.11	50.0	300.1	4567.878
8th Floor	2010	78.83	342519.6	0.10	42.2	342.3	3328.488
7th Floor	2010	66.25	279147.4	0.08	34.4	376.7	2279.666
6th Floor	2010	53.67	217875.6	0.06	26.9	403.6	1441.335
5th Floor	2035	41.08	161031.3	0.04	19.9	423.4	815.5067
4th Floor	2041	27.42	100389.8	0.03	12.4	435.8	339.2782
P6	1869	16.75	51467.7	0.01	6.3	442.1	106.2676
Plaza Level	-	0.00	-	-	-	-	-
Total	21205	-	3586852.03	1.00	442.1	-	43407.95

Table 32: Design Values					
Effective Seismic Weight	21205 kips				
Base Shear	442.1 kips				
Overturning Moment	43407.9 kips-ft				

	J.M.V.	Thesis	
	111111111		
	Calculation S	For Seismic Analysis	
	Not detached	1 10 2 Family Dwelling } 8. Nor Hard Starrage } 8. Nor Considerations	()
	Not Agricu Not Special	thed Starage Star	t Except [sect 11,1,2]
	Selsmit Grow	nd Motion Values	
	S ₅ = 1	0.156 g	[Fig 22-1]
5	5, = 0	2.051 g	[F13 22-4]
Contract of the second		5, 20.04 \$ 55 20.15	[seit, 11,4,1]
~	Determine Sai	il site Class -> C	
	Sms =	FaSs = (1.2)(0.156)	[=z, 11.4-1]
25	Smi =	F.S. = (1.7) (0.051)	[Ez: 11.4-2]
	S _{DS} =	23 Sms = 0,1248	[E2. 11.4-3]
	50, =	2/3 So, = 0.0578	[== , 11,4-4]
	Seismic Day	ign Cotegory	
	505 <	0.167 - A	[TABLE 11.6-1]
	50, <	0.067 - A	[Toble 11.6-2]
	Determine	occupancy category -> II	
		- Importance Factor = 1.0	[Toble 1-1]
	- 5e.	otran 11.6 requirements for slupplit	fied design
		· I, I o III -> Yes · S, <0.75 -> Yes	
		· h L 40' -> No	
		to Simplified d	ors not apply

	J.W.V.	Thesis	
	Parmitted Analyt	tical Procedures - SDC	B [Table 12.5-1]
		Lateral Force Analysis	
		ponse Spectrum Analysis spanse History Procedures	
1		lateral Force Analysis	
	Determine Respon	use Modification Factor	- Controling element
ъ			= 3.25 [Toble 12.2-1]
And A		In any Concontricolly island	Pravmes
~	Detroit		
		Fundamental Period	6
		* = 0.02(149) .75	[Eg. 12.8-7]
		8829 sec	
		sec > Ta	[F.g 22-15]
			[Ez 12.8-2]
	nut to succe	$J C_{5} = \frac{S_{01}}{T(R/2)} = \frac{0.0578}{0.82(4.5)}$	(1) = 0.0156 [E6 12.8-3]
	must be	greater them 0.01 , St	= 0.051 (0.6 [E5 12.8-5]
	7. C3 =	0.0156	
	K = 1.161	(by interpolation)	[Sect 12.8-3]
	Determine Strun	y Force	
	Cvx = 7	Wahan V=Cs	(Ez 12.8-12] W [Ez 12.8-1]
	Fa = Cui		[=2. 12.8-11]
	see fi bu	igures and tables provide illelong weights and force ci	ed for piculations
4			

Appendix D

Lateral Analysis

AISC 360 Direct Analysis Validation Report

RAM Frame v14.05.03.00 DataBase: RMP T Model walled Academic License. Not For Commercial Use.

02/23/14 10:05:03

DESIGN CODE

AISC 360-10 LRFD

SECOND-ORDER ANALYSIS

P-Delta analysis was performed with gravity loads. Scale factor (DL) : 1.20

Scale factor (LL): 0.50

B1 Factors:

B1 factors were calculated and applied to gravity load case moments.

B2 Factors: B2 factors were not applied.

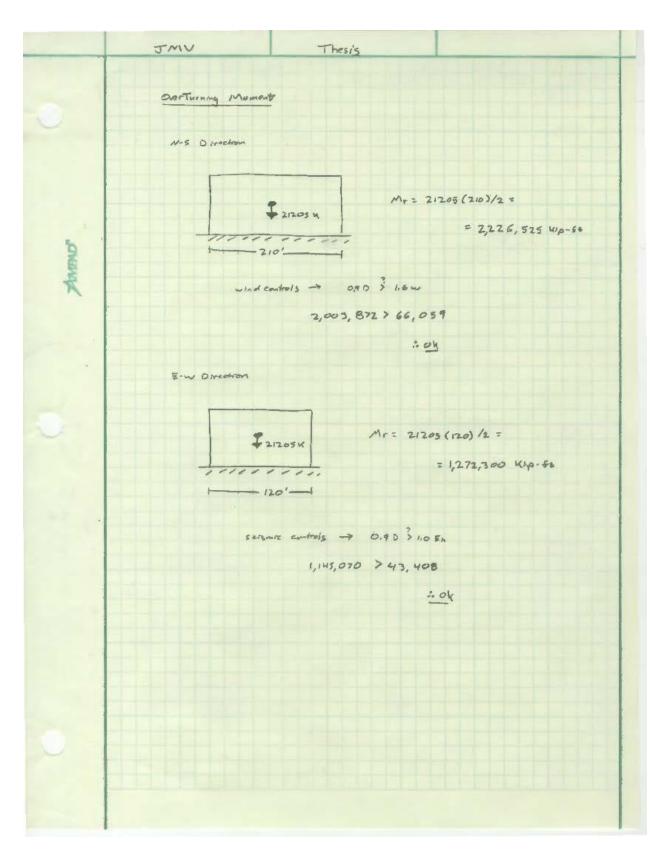
NOTIONAL LOADS

Fraction of gravity loads used for Notional Loads: Global X-axis : 0.0020 Global Y-axis : 0.0020

Generated Load Combinations:

Number of Selected Load Combinations = 104 Notional Loads were included with all combinations

REDUCED STIFFNESS


Flexural Stiffness:

The flexural stiffnesses were reduced.

Number of members with required $\tau b < 1.0 = 7$ Smallest required $\tau b = 0.981$ Column #: 20 on Level: Garage Load Combination: 1.200 D + 1.200 ND2 + 1.600 Lp + 1.600 NL2 τb used in Analysis : 0.982

Axial Stiffness:

The axial stiffnesses were reduced.

JMV Thesis Moment Frame Column Check W14×176 L= 13.67' 1.20+0.56 - 1.6 W. 1.20 + 1.61 - Forces above result from Ind orden analysis in software is notional lands & appropriate Sectors already included in volues Pe = 2023.3 k [Toble 4-1] Mc= 1200 N.p. St [Table 3-6] Lo < Lo : Mc= dmm Case 1: Pulpp = = = = = 0.29 > 0.2 [use equintron HI-10] Pr/4Pn+ (8/4) Mar / 6 Max = 1.0 (589.41/2023) + (3.2/200)(19/9) = 0.29 5 10 1. 0K Case 23 Pu/dp = 421.94/2023,3 = 0.21 7 0.2 [use equation HI-14] Pr/dPn + (%) Mrs/BMne \$1.0 421,94/2023 + (8/4) (40.36/1200) = 0.28 = 1.0 :. ok is Column is adequate for moment frame - over capacity due to drift control needs

		Member Force	Envel	ope		
RAM Fra	ame v14.05.03	3.00				
RAM DataBase	e: RMP T Moo	del walled			02/25/14	13:01:37
Building	Code: IBC					
		ot For Commercial Use.				
STEEL COLUMN						
Column Num		Frame Number				
Level Top: O			0,0.00)			
	ffice 4th Floor					
Fy (ksi) = 50.		Column Size $=$ W1	4X176			
Elastic Modulu						
Orientation (de	g) = 0.00	Length (ft) = 13.67				
INPUT PARAME	TERS:					
		Тор		Bottom		
Fixity Majo	or Axis:	Fix		Fix		
Mino	or Axis:	Fix		Fix		
Torsi	on:	Fix		Fix		
Joint Face Dist	(in):					
Majo	er:	10.40		10.40		
	Minor:			0.00		
Rigid End Zon	e (in):					
Majo		0.00		0.00 (Ignore)		
Minc)r:	0.00		0.00 (Ignore)		
Member Force	Output:	At Face of Joint				
P-Delta:	Yes	Scale Factor (DL):	1.20	Scale Factor (LL):	0.50	
		Scale Factor (Roof):	1.00	Scale Factor (Snow):	1.00	
Ground Level:	Base			and the second se		
LOADCOMBRIA	TIONS. IL.	- Carretterd				

LOAD COMBINATIONS: User Specified No. of Specified Combinations: 98

	Р	Mmajor	Mminor	Vmajor	Vminor	Tors
	kips	kip-ft	kip-ft	kips	kips	kip-ft
Max @ T:	589.41	66.63	1.29	7.21	0.09	0.04
LC:	2	26	4	51	7	68
Max @ B:	589.41	57.48	2.48	7.21	0.09	0.04
LC:	2	51	4	51	7	68
Maximum:	589.41	66.63	2.48	7.21	0.09	0.04
LC:	2	26	4	51	7	68
@ (ft):	0.87	0.87	13.67	0.87	0.00	0.87
Min @ T:	157.01	-30.26	-1.29	-13.01	-0.09	-0.05
LC:	51	62	40	15	67	8
Min @ B:	157.01	-90.36	-2.47	-13.01	-0.09	-0.05
LC:	51	15	64	15	67	8
Minimum:	157.01	-90.36	-2.47	-13.01	-0.09	-0.05
LC:	51	15	64	15	67	8
@ (ft):	0.87	12.80	13.67	0.87	0.00	0.87

	JMV	Thesis						
	Moment	Frame Column Check						
	W14×176	Lood 1 - Pie, man	bread 2 - Musimaga					
	L= 16.75'	Pr. = 741.71 1445	Prz = 532,41 Myps					
		Mr. = 0.415 KApto 1.20+1.66	Mrs = 109, 13 k/a=ft 1.20+0.56 - 1.6W,z					
			The tost and with					
		from 2nd order analysis in Si						
	i- motoria	el lands 5 appropriets Sachers included	l a welkes					
Aneno"	Pc = 2023.3 k	[T-bie 4-1]						
INE	Mc = 1200 Kip	4						
N	AM	= 1200 KH0-64 [Toble 3-6]						
	terne .	1200 Kip-or [iobic i-a]						
	\$Mn =	= dMp = dBF(Lo-Lp) = 1200 - 7.83(16.75 - 14.2) = 1180.03 Kyp-64					
	Me	:= min 5 OMp = 1200 & control						
		:= mm { 00Mp = 1200 & control 01Mn (b = 1180.03 (2.41)	2 3150					
	Case 1 :							
	Pulepa =	74/17/2023 = 0.36 70.2	[: use equation H1-10]					
	$Pr/dP_{m+} (8/q) \stackrel{Mm}{=} 4 1.0$							
	r./dPn	+ (019) 70 Max = 1.0						
	741.31	2013 + (8/9) (0.45/1200) = 0.3	7 ≤ 1,0 ∴ <u>ok</u>					
	Case 2: Pu/dPn z	sni41/2023 = 0.26 > 0.2	[i use equation HI-la]					
	PrløPn	+ (8/9) Mrx/&Mnx 51.0						
	532.	41/2023 + (8/9) 109.3/1200 = 0.	34 610 204					
	to columna is	adequate for moment frame						
		and the second second						
	- over c	ispacity due to drift control ne	reds					
			Contraction of the second second					

				<u>Member Force F</u>	nvel	ope		
	RA	M Frame	v14.05.03.0	00				
RA	M Dat	aBase: RI	MP T Mode	el walled			02/25/14	13:01:37
	Bui	lding Cod	le: IBC					
STE			icense. Not FORMAT	For Commercial Use. ION:				10
1	Column	Number:	3	Frame Number:	1			
	Level T	op: Garag	e	Column Line (40.00,0	0.00)			
	В	ot: Base		54 ×5	~			
	Fy (ksi) 🗉	= 50.00		Column Size = $W1^2$	4X176			
]	Elastic M	odulus (k	si) = 29000).00				
(Orientatio	on (deg) =	0.00	Length (ft) = 16.75				
INP	UT PAR	AMETER	RS:					
				Тор		Bottom		
]	Fixity	Major Az	xis:	Fix		Fix		
		Minor A:	xis:	Fix		Fix		
		Torsion:		Fix		Fix		
10 10	Joint Fac	e Dist (in)):					
		Major:		10.40		0.00		
		Minor:		0.00		0.00		
]	Rigid End	d Zone (in	ı):					
		Major:		0.00		0.00 (Ignore)		
		Minor:		0.00		0.00 (Ignore)		
]	Member	Force Out	put:	At Face of Joint				
	P-Delta:		Yes	Scale Factor (DL):	1.20	Scale Factor (LL):	0.50	
				Scale Factor (Roof):	1.00	Scale Factor (Snow):	1.00	
	Ground L	evel:	Base					

LOAD COMBINATIONS: User Specified No. of Specified Combinations: 98

	P kips	Mmajor kip-ft	Mminor kip-ft	Vmajor kips	Vminor kips	Tors kip-ft
Max @ T:	741.71	33.07	2.73	8.93	2.08	0.03
LC:	2	74	14	62	56	68
Max @ B:	741.71	108.70	32.20	8.93	2.08	0.03
LC:	2	62	8	62	56	68
Maximum:	741.71	108.70	32.20	8.93	2.08	0.03
LC:	2	62	8	62	56	68
@ (ft):	0.87	16.75	16.75	0.87	0.00	0.87
Min @ T:	298.80	-33.10	-2.65	-8.95	-2.08	-0.03
LC:	91	14	74	26	20	8
Min @ B:	298.80	-109.13	-32.13	-8.95	-2.08	-0.03
LC:	91	26	68	26	20	8
Minimum:	298.80	-109.13	-32.13	-8.95	-2.08	-0.03
LC:	91	26	68	26	20	8
@ (ft):	0.87	16.75	16.75	0.87	0.00	0.87

JMV Thesis Moment Frame Beam Check 1) Girden - level: 5th Floor [G-1 to H-1] WZ1=50 L= 20'-0" Mu= 167.25 Kip-5+ 1.2 13 +0.5 L - 1.6 w, Vu= 30.85 Kips 1.20+ R56+1.6W, \$Mp= 413 kp-5+ CIMENNO Wh = 237 KAPS &Mo>My : oh OVA > Vu iok " Member is adequate for moment frame loads - over capacity due to drift control needs 2) Girdan - level : 7" Floor [I-7 +0 J-7] W21x50 L=20'-0" Mu= 187.33 KAP-St 1,20+0.56 -1.6W. Vu = 32.73 Kps 1.20+0.56 - 1.6W, 06Mp= 413 Kp-56 & Vn = 237 Kip - 54 osmp>mu :ok OVn > Vu sok is Member is adequate for moment frame loads -over capacity due to drift control mards

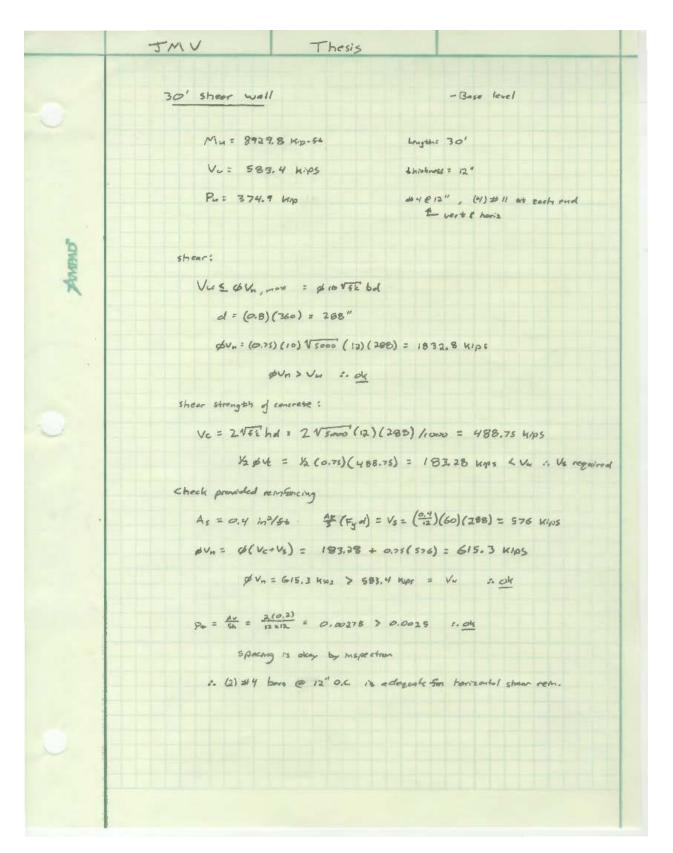
Member Force Envelope

RAM Da	M Frame taBase: RN ilding Cod	AP T Mod				02/25/14 13:01:37
AC STEEL BEA			t For Commercial Use. N:			ž.
Beam N	umber: 68		Frame Number:	2		
Level: O	ffice 5th Fl	.oor	I-End (120.00,0.0)0)	J-End (140.00,	0.00)
Fy (ksi)	= 50.00		Beam Size $=$ W21X50)		
Length (ft) = 20.00					
Elastic N	lodulus (ks	si) = 2900	0.00			
INPUT PAR	AMETER	S:				
			I-End		J-End	
Fixity	Major Ax	is:	Fix		Fix	
	Minor Ax	dis:	Fix		Fix	
	Torsion:		Fix		Fix	
Rigid En	d Zone (in)):	0.00		0.00 (Ignore)	
Member	Force Out	out:	At Face of Joint			
P-Delta:		Yes	Scale Factor (DL):	1.20	and a second sec	0.50
			Scale Factor (Roof):	1.00	Scale Factor (Snow):	1.00
Ground I	Level:	Base				

LOAD COMBINATIONS: User Specified

No. of Specified Combinations: 98

	P kips	Mmajor kip-ft	Mminor kip-ft	Vmajor kips	Vminor kips	Tors kip-ft
Max @ i:	0.00	93.51	0.00	30.08	0.00	0.00
LC:	26	51	57	15	55	8
Max @ j:	0.00	82.71	0.00	1.99	0.00	0.00
LC:	26	63	55	63	55	8
Maximum:	0.00	117.64	0.00	30.08	0.00	0.00
LC:	26	2	55	15	55	8
@ (ft):	0.00	10.00	19.37	0.64	0.64	0.00
Min @ i:	-0.00	-167.32	-0.00	-2.35	-0.00	-0.00
LC:	38	15	21	51	19	68
Min @ j:	-0.00	-167.17	-0.00	-30.85	-0.00	-0.00
LC:	38	3	19	3	19	68
Minimum:	-0.00	-167.25	-0.00	-30.85	-0.00	-0.00
LC:	38	15	19	3	19	68
@ (ft):	0.00	0.64	19.37	19.37	0.64	0.00


<u>Member Force Envelope</u>

RAM Frame DataBase: RI Building Cod	MP T Mode	Fail an a			02/25/14 13:01:37
Academic L STEEL BEAM INFO		For Commercial Use.			ž.
Beam Number: 61	2	Frame Number	: 4		
Level: Office 7th F	loor	I-End (160.00,12	0.00)	J-End (180.00,	120.00)
Fy (ksi) $= 50.00$		Beam Size = W21X5	0		
Length $(ff) = 20.00$					
Elastic Modulus (k	si) = 2900	00.0			
INPUT PARAMETER	RS:				
		I-End		J-End	
Fixity Major Az	cis:	Fix		Fix	
Minor A:	xis:	Fix		Fix	
Torsion:		Fix		Fix	
Rigid End Zone (in	ı):	0.00		0.00 (Ignore)	
Member Force Out	put:	At Face of Joint			
P-Delta:	Yes	Scale Factor (DL):	1.20	Scale Factor (LL):	0.50
		Scale Factor (Roof):	1.00	Scale Factor (Snow):	1.00
Ground Level:	Base				

LOAD COMBINATIONS: User Specified

No. of Specified Combinations: 98

	P kips	Mmajor kip-ft	Mminor kip-ft	Vmajor kips	Vminor kips	Tors kip-ft
Max @ i:	0.00	90.07	0.00	32.73	0.00	0.00
LC:	13	51	8	15	8	8
Max @ j:	0.00	112.22	0.00	4.41	0.00	0.00
LC:	13	63	8	63	8	8
Maximum:	0.00	112.94	0.00	32.73	0.00	0.00
LC:	13	2	8	15	8	8
@ (ft):	0.00	10.00	19.38	0.62	0.62	0.00
Min @ i:	-0.00	-187.33	-0.00	-2.96	-0.00	-0.00
LC:	25	15	68	51	55	68
Min @ j:	-0.00	-168.50	-0.00	-29.82	-0.00	-0.00
LC:	25	3	68	3	55	68
Minimum:	-0.00	-187.26	-0.00	-29.82	-0.00	-0.00
LC:	25	15	68	3	55	68
@ (ft):	0.00	0.62	19.38	19.38	0.62	0.00

JMV Thesis check vertical stor remonsement Pe = AVSh 20.0023 + 0.9 (2.5 - 129, 63) (0.00278-0.0023) K 0.0023 is use per 0,0025 as min Au = 2(0.2) Sh = 12x12 = 0.00278 > 0.0025 :00 "CHENNE check Slexural remaining Musomn = BASFyId Ja: d-a/2= 288-14,68/2= 280.66" $a = \frac{A_5 F_3}{a.85 F_{Cb}} = \frac{(12.48)(50)}{a.85(5)(12)} = 14.68^{\circ}$ 8929.8 5 (0.9) (12.98) (60) (280.66) (1/12) 8929.8 4 15761.9 Kip-St : (8) \$ 11 boes is adequate for boundary remforcing for flexure

Section Cut Design Summary

RAM Concrete Shearwall v14.05.03.00 Database: RMP T Model walled Design Code: ACI 318-11 Academic License. Not For Commercial Use.

02/21/14 17:40:13

SC8H:11 (Horizontal))
Garage	
Imaj = 46655996 in4	Imin = 51840 in4
90.00 degrees (CCW	from global X-axis)
8	
PASS	
	Garage Imaj = 46655996 in4 90.00 degrees (CCW 8

SC8H:11

PLAN VIEW

Axial/Flexural Results:

Interaction:	0.791	OK		
Pu =	-374.88 kips	phiPn		-474.19 kips
Mu =	8929.8 kip-ft	at	Beta =	-0.0 deg CCW from Major axis
Controlling Load Combo:	0.900 D - 1.600) W7 (L	.C 69)	
Code Ref:	10.3.7			

Shear Results:

Segment SC8H:11:					
Length = 30.00 ft	Thick $= 12.00$ is	n $fc = 60$	000 psi	fy =	60 ksi
Vert Bar Pat: 28 garage	Horiz	Bar Pat: 28 g	arage		
Vu =	583.4 kip	phiVn =	825.7 kip	O	K
Controlling Load Combo:	1.200 D - 1.600	W5 (LC 43)			
Code Ref:	14.2.3 & 11.9.5				

Reinforcement Checks:

Min Vert Reinf Ratio: Limit: 0.250% Actual: 0.535% (11.9.9.4) OK Segment SC8H:11: Max Vert Bar Spacing Limit: 18.00 in Actual: 12.00 in (11.9.9.5) OK Min Vert Bar Spacing Limit: 1.00 in Actual: 11.50 in (7.6.1) OK Min Number of Reinf Curtains: 2 Actual: 2 (14.3.4) OK

JMU Thesis 20' shear Woll - Base level Mu= 3220, 5 Kip- H Longth = 20" fe= 5 lesi Vus yio wips thickness = 12" Gy . BO Ker P4 = 4134.1 KAPS #4@ 12" , (4) #11 of each and Amboriz Svert CIMENNE sheer : Vu & \$ Vn, me = \$10 Tri bd d= (0.8) (240)= 192" \$ Vn = 0.75 (10) TEmo (12) (192) /1000 = 1221.9 Maps 4 Vn > Vo 1. OH show strongsh of concrete 2 Ve = 2. V52 hd = 2 V5000 (12) (198) /1000 = 336.25 HADS Va dVc = Va (0.75) (336.25) = 126.01 Kips < Vu 1. Vs required check provided reinforcing As = 0.4 in=/fa Ar (Fg d) = Vs = (0.4) (6000) (192) = 384 kips Qun = \$ (Ve+Vs) = 126.01 + 0.75 (384) = 4/4/ kips \$Vn = 414 > 410 = V4 3.04 y = = Av = 2(0.7) y = = 3h = 2(0.7) 12=7h = 0,00278 > 0,0028 ...04 spacing is easy too inspection. :. (2) #4 bars @ 12" O.C. is adequate for horizontal shear rein.

JMV Thesis check vertical shear remissioners De = AV/sh 2 0.0025+ 0.5 (2.5 - 129.6) (0.00278-0.0025) < 0.0025 : use pe > 0.0025 as mm Av 2(0.2) = 0.00278 > 0.0025 1. 04 "CHAINA check Slexurel reinforcing Mu & BMn = BASFy In Id = d- a/2 = 196- 14,50/2 = 188.6" $\alpha = \frac{A_{5}F_{4}}{\alpha \phi 5 f c b} = \frac{(12, 4B)(60)}{\alpha B 5 (0)(12)} = 14, 68^{0}$ 3220.8 4 (0.9) (12.48) (60) (108.5) (10) 3220 8 4 10 591 is (8) #11 bars is a deguale for boundary remforming for flamme

Section Cut Design Summary

RAM Concrete Shearwall v14.05.03.00 Database: RMP T Model walled Design Code: ACI 318-11 Academic License. Not For Commercial Use.

02/22/14 13:38:24

Section Cut ID:	SC7H:11 (Horizontal)		
Story:	Garage		
Ag = 2880 in 2	Imaj = 13823999 in4	Imin =	34560 in4
Major Axis Orientation:	90.00 degrees (CCW f	rom global	X-axis)
Wall Design Group:	7		
Design Status:	PASS		

SC7H:11

PLAN VIEW

Axial/Flexural Results:

Interaction:	0.736	OK		
Pu =	-434.12 kips	phiPn =		-590.15 kips
Mu =	3220.8 kip-ft	at Be	eta =	0.0 deg CCW from Major axis
Controlling Load Combo:	0.900 D + 1.60	0 W8 (LC	58)	
Code Ref:	10.3.7			

Shear Results:

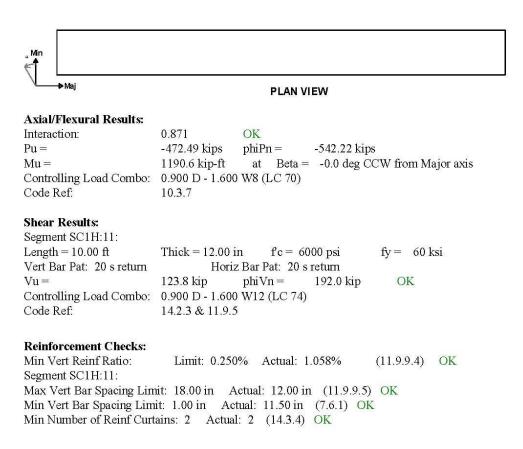
Segment SC7H:11:				
Length = 20.00 ft	Thick $= 12.00$ in	n $fc = 50$	000 psi	fy = 60 ksi
Vert Bar Pat: 20 garage	Horiz	Bar Pat: 20 g	garage	
Vu =	410.0 kip	phiVn =	527.1 kip	OK
Controlling Load Combo:	1.200 D + 0.500) Lp - 1.600 W	/6 (LC 20)	
Code Ref:	14.2.3 & 11.9.5			

Reinforcement Checks:

Min Vert Reinf Ratio: Limit: 0.250% Actual: 0.666% (11.9.9.4) OK Segment SC7H:11: Max Vert Bar Spacing Limit: 18.00 in Actual: 12.00 in (11.9.9.5) OK Min Vert Bar Spacing Limit: 1.00 in Actual: 11.50 in (7.6.1) OK Min Number of Reinf Curtains: 2 Actual: 2 (14.3.4) OK

```
JMV
                                 Thesis
              Return Wall Check
                                                 - Base level
               Mu = 1190.6 kp - ft
                                              Longth = 10' flas 5 hol
               Vu= 123.8 Kyps
                                                thiskness 12" Sy: 60 Ksi
                Pu= 472.5 Kips
                                                 # 4 @ 12" , (4) # 11 at each end
                                                     E vertshowiz
DIMAN
             Shear :
                 Vu & & Vn, ma 2 $ 10 VFE bd
                   d= 0.8(120) = 96"
                  d Vu = 0.75 (10) V 5000 (12) (96) / 1000 = 610.9 W/25
                          QUA > Va : de
             sherr stranges of Concrete :
                  Ve= 2 Vii hd= 2 Viono (12)(96) /1000 = 162.9 Knos
                   YadVe : Valors) (162.9) = 61.1 klps & V4 5. Vs required
             Check provided remaining
                 As = 0.4 m3/54 AY (Fy of) = Vs = (AY) (60000) (96) = 192 Wips
                 &V== $ {V2+V5} = 61.1 + 0.75 (192) = 205.1 Wys
                          dVn = 205 Kips > 123.8 Kips = Vu 1.04
                 94 = AV = 210,0) = 0.00278 > 0.0028 .00k
                    spacing is ok by inspection
                    : (R) #4 bors @ 12" O.C. Is adapted for borizontal sher rem.
```

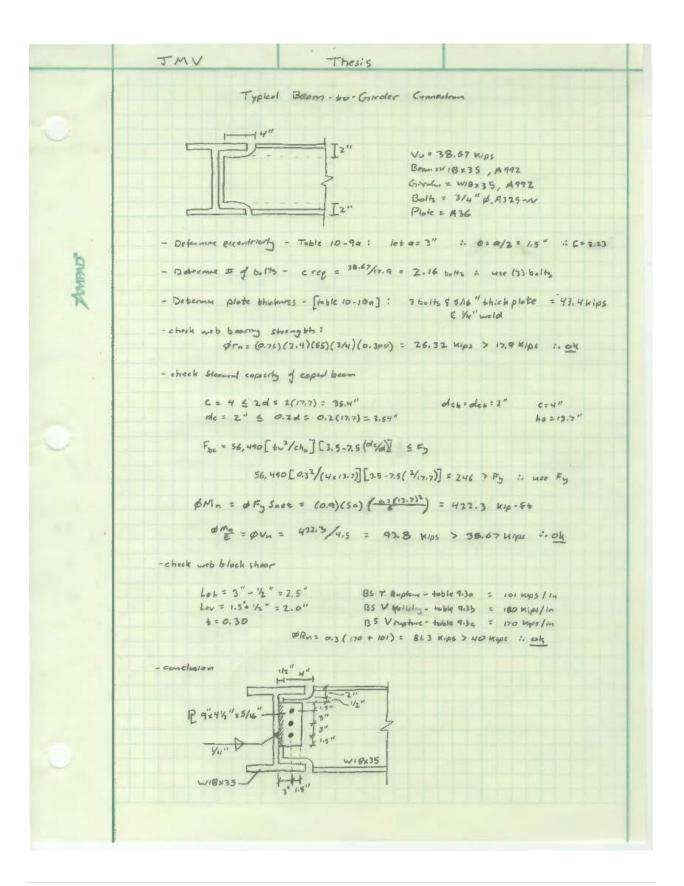
JMV Thesis Check vertical shear washing 91 = Av/sh 2 0.0025 + 0.5(2.5 - 120.00) (0.00278 - 0.0025) < 0.0025 is use pe 2 0,0025 as man AV = 2002) = 0.00278 > 0.0025 :. 04 1. (2) # 4 bors @ 12" w,c, is adoquele for vertical shear rem. CARRING Check flexure Mu & & Mn = & As Fy Id 1190.6(12) \$ (0.9) (#x 1.56) (60) (88.66) Ja = d- 9/2 = 96 - 14.68/2 = 88.66 $Q = \frac{A_1 F_2}{a_1 s_1 s_2 s_2} = \frac{(12, 118)(60)}{a_1 s_1 (5)(12)} = 14.68$ 1190,6 Nip-St & 4979,1 Kipst 2. (8) # 11 bars is adagante for boundary representing for floxure

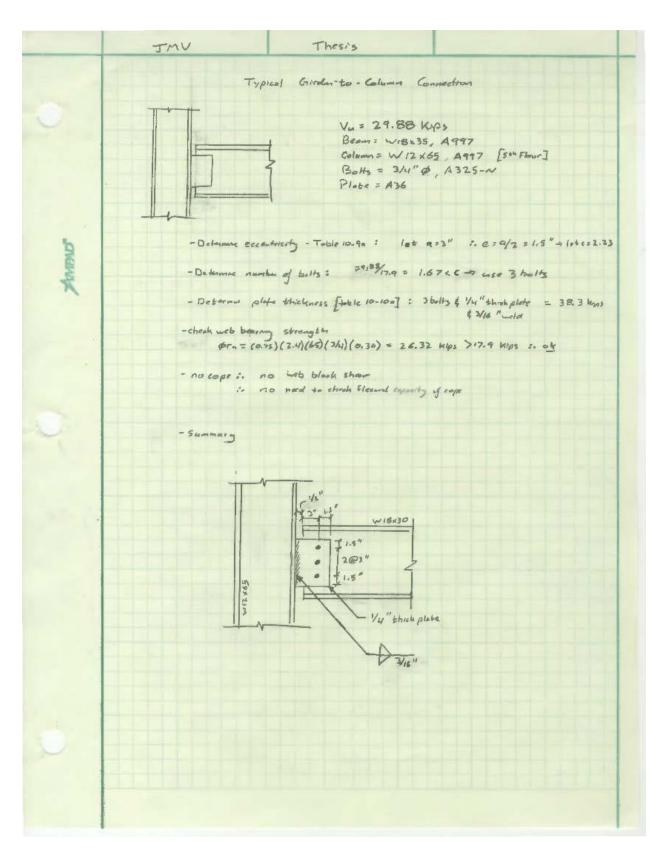

Section Cut Design Summary

RAM Concrete Shearwall v14.05.03.00 Database: RMP T Model walled Design Code: ACI 318-11 Academic License. Not For Commercial Use.

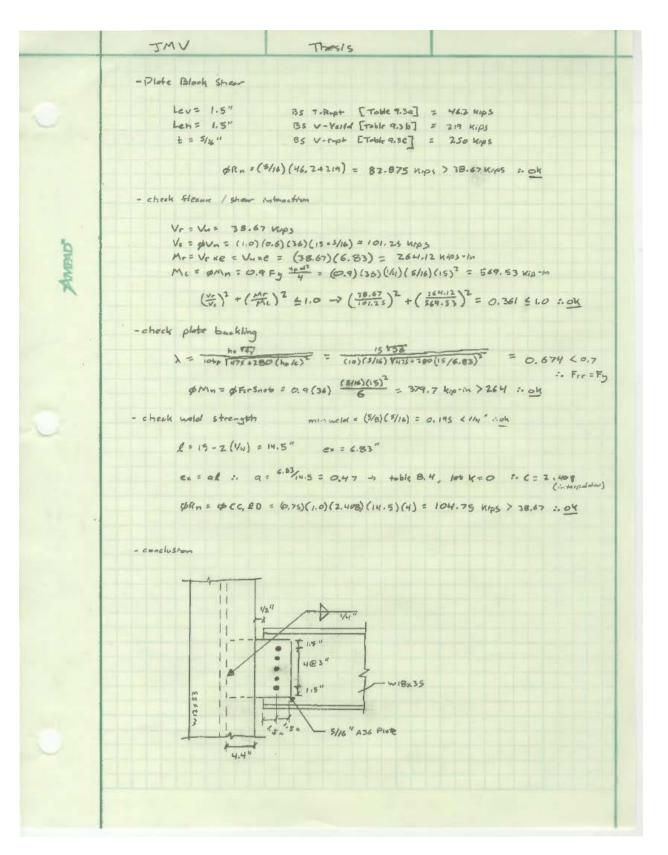
02/21/14 18:05:01

Section Cut ID:	SC1	H:11 (Horizontal))	
Story:	Gara	nge		
Ag = 1440 in2	Imaj =	1728000 in4	Imin =	17280 in4
Major Axis Orientation:	0.00	degrees (CCW fi	om global 3	K-axis)
Wall Design Group:	1			
Design Status:	PAS	S		


SC1H:11


Appendix E

Connection Design


			<u>G</u>	<u>Fravity I</u>	seam D	<u>esign</u>			
	RAM Steel [.] DataBase: R							02/1	3/14 14:57:4
	Building Co						Steel Co		360-10 LRF
	Academic I e: Typical			<mark>mmercial</mark> umber = 78					
		DNI (64) . I				0.0.0.10.00			
	FORMATION Size (User S			W18X35	J-Ena (St).00,40.00)	Ev =	50.0 ksi	
	Beam Lengt			40.00			ı y	50.0 KSI	
	SITE PROP								
	ITE I KOI	ERITES		cu).	Left		Right		
Deck	Label			Typical	Flooring	Typica	al Flooring		
Concr	ete thicknes	s (in)			3.25		3.25		
	veight concr	ete (pcf)			115.00		115.00		
fc (ks					3.00		3.00		
	ng Orientati	on			endicular	-	pendicular		
	ng type			VULCRAF			AFT 2.0VL		
beff (i		=	120.0		bar(in)	=		.13	
Mnf (I		=	569.0		n (kip-ft)		445		
C (kip Ieff (i		=	189.5 1249.1		IA (in) (in4)	=	1729	.17	
	ength (in)	=	3.5		ud diam (ii			.41 .75	
	Capacity (kip			g = 1.00	Rp = 0.	Contraction of the second s	0		
# of st		= 70	Partial =		tual = 22				
	er of Stud R	ows = 1				tion = 36.80			
	ADS (k/ft):								
Load	Dist	DL	CDL	LL	Red%	Туре	PartL	CLL	
1	0.000	0.427	0.427	0.000		NonR	0.000	0.000	
	40.000	0.427	0.427	0.000		TOTAL	0.000	0.000	
2	0.000	0.050	0.000	0.800	22.0%	Red	0.200	0.200	
	40.000	0.050	0.000	0.800			0.200	0.200	
3	0.000	0.035	0.035	0.000	1000	NonR	0.000	0.000	
	40.000	0.035	0.035	0.000			0.000	0.000	
SHEAR (Ultimate):	Max Vu (1	.2DL+1.6	5LL) = 38.0	57 kips - 1	.00Vn = 159	.30 kips		
MOMEN'	FS (Ultimat	e):							
Span	Cond		Combo	Mu	(a)	Lb	Cb	Phi	Phi*Mn
				kip-ft	ft	ft			kip-ft
Center	PreCmp	+ 1.2D	L+1.6LL	175.0	20.0	0.0	1.00	0.90	249.37
	Init DL	1.4D		129.5	20.0				
	Max +		L+1.6LL	386.7	20.0			0.90	400.86
Controlling	g	1.2D	L+1.6LL	386.7	20.0			0.90	400.86
REACTIO	ONS (kips):								
	Production - Track of the Information			Left	Right				
	reaction			13.25	13.25				
DL re				10.25	10.25				
	-LL reaction -total reaction		Ð	16.49 38.67	16.49 38.67				
			~		20.07				
	FIONS: (C	amber = 1	-1/4)						
	load (in)		at	20.00 ft		-1.801	L/D =	267	
Tirra 1	oad (in)		at	20.00 ft		-1.310	L/D =	366	
	22 22 22 22 22 20 20 20 20 20 20 20 20 2					1 200	T/D	245	
Post C	Comp load (i otal load (in)		at at	20.00 ft 20.00 ft		-1.389 -1.940	L/D = L/D =	345 247	

				<u>G</u>	<u>ravity E</u>	Beam D	<u>esign</u>			
	DataBas Building	, Code: I	T Mode BC	l walled		K.T		Steel C		/25/14 13:01:3′ C 360-10 LRFI
Floor Ty	Academ pe: Typic	cal	ise. Not E	For Con leam Nu	<mark>nmercial</mark> mber = 58	u se.				
SPAN IN	FORMA	TION (ft): I-I	End (100	.00,120.00) J-End	l (120.00,12	0.00)		
	i Size (Oj Beam Le cip-ft)	ength (ft)	77.08		W18X35 0.00			Fy =	= 50.0 ksi	
POINT L	OADS (kips):								
Dist	DL	RedLL	Red%	NonRI	L StorL	L Red%	6 RoofLL	Red%	PartL	
10.000	9.73	15.20	1.2	0.0	0.0 0.0	0.0	0.00	0.0	3.80	
18.500	5.00									
1.500	5.00									
LINE LO	ADS (k/	'ft):								
Load	Dist	1]	DL	LL	Red%	Туре	PartL			
1	0.000	0.0	136	0.000	-	NonR	0.000			
	20.000	0.0	136	0.000			0.000			
2	0.000	0.0	04	0.067	1.2%	Red	0.017			
	20.000	0.0	04	0.067			0.017			
3	0.000	0.0	35	0.000	10000	NonR	0.000			
	20.000	0.0	35	0.000			0.000			
SHEAR (Ultimate	e): Max	Vu (1.2	DL+1.6	LL) = 29.1	2 kips 1	.00Vn = 159	9.30 kips		
MOMEN					2			88		
Span	Con		LoadC	ombo	Mu	(a)	Lb	Cb	Phi	Phi*Mn
opuir	COI	u	Douge	511100	kip-ft		ft	CU	1111	kip-ft
Center	Max	· +	1.2DL-	-1 6L L	229.1	10.0	10.0	1.60	0.90	249.37
Controllin			1.2DL-		229.1	10.0	10.0	1.60	0.90	249.37
			1.202	1.0111		10.0	10.0	1100	015 0	2.0.0
REACTI	UNS (KI	ps):			Loft	Diah4				
	action				Left 10.62	Right 10.62				
	+LL reac	tion			10.02	10.02				
	+total rea		ctored)		10.24 29.12	29.12				
		12	ctored)		27.12	J.14				
DEFLEC				r	10.00.0		0.0.51	T/D	0.55	
	load (in)			at	10.00 ft		-0.251	L/D =	955	
	load (in)	(in)		at	10.00 ft		-0.387	L/D =	621	
Net T	'otal load	. (m)		at	10.00 ft		-0.638	L/D =	376	


```
JMV
                           Thesis
       Typical Beam to - Column Web Connection [Higher levels]
               + V2" settered
                                 Vu= 38.67 Kups
                                Been = WI8x35, A 992
                                 Column = WIZX53 [E-1, 7th Floor]
                                 Bolts = 314"06, A323-N
                                 Place = A36
  - Determine pecentrierty : e= 1/2 (10-0,345) + 1/2"+1.5" = 6.83"
  - Determon st of buttons Plate that have been
          dim (bolt) = 17.9 Kiyos
          $ rn (web beer) = $ (7.4) Fuds the = (0.76) (2.4) (65) (3/4) (0.3) = 26.3 mps
          chr. (plole bear) = $$ (2.4) Fudb == (0.75)(2.4)(58)(3/4) $$ = 78.3 $$
       Toble 7-6 : Let S=3", ex= 6.83", C = 20.62
17.9 = 2.16
                  if C= 2-33 (by interpolation) so in: 5 bolts
       Plate blockwass : 78.3 +p 2 17.9 1. +p 2 0.23" -> try 5/10" thick
       - Try (5) Butts with 5/16" think plobe
  - Determine strangth of Boltz
        gorn, bolt = 17. 9 Kips
         $ Fn, plote bearing = 24.5 kips
                                                      = 41.76 Kyps > 38.67 Kyps
                                                                        : ok
  - check maximum plate thickness
        A_b = \frac{T_{41}}{(0.75)^2} C' = 17.1 in F_v = 5Y F_s = 36 d = 2(115) + 4(13) = 15^{11}
       Mmax = ( For/0.9) Ab (' = ( 54/0.9) ( T/4 ( 0.75) 2) (17.1) = 453.3 KHp-in
       tmax: 6 Muntur = 6 (4533)
Frank = 75 all = (56) (15) = 0.336 in > 0.3125 in : 04
 - Plate Shear Yorlding
       $Rn = $10.6) = Aq = (0.6) (1.0) (36) (15 x $16) = 101.25 kips > 38.67 kips inch
  - shear plate Ryphane
       QRn = d(0.6) Fu An = (0.75) (0.6) (58) [15-51314+1/16+1/16] (5/16)
                                                   = 86.66 Kips > 38.67 Kips 1.04
```


JMV Thesis Typical Beam-to-Column Web Connectron [lower levels] Vu= 38.67 Kips Beem = W18+35, A992 Column 1 W12 865 , 4992 Bolts , shi d , Azzs -N Angles = A36 Kales = 0.827 " Kolet = 11/2" CIMERINO -been shear yeilding : \$Rn = \$0.6 Eyly = (1.0)(0.6)(50)(17.7×0.3) = 159.3 Mips 7 Ve inter - beam show rupture = WRN = \$ 0.6 En Anv = (1.0) (0.6) (53) (17.7×0.3) = 207.1 MAPS > UN ... of - Beam local web yorlday lo.m. = R4 10 Fybu = 2.5 Kdos = 78.67 100(50)(0.39) = 2.5 (0.827) = -0.08 (Kdut in use Wedet - Beam local web asigpling , assume Rold 50.2 Lo, mm = 3 (++) = [0.75 (0.4) ++ = 1] $= \binom{17,7}{3} \binom{0.413}{0.300}^{1.5} \left[\frac{39.67}{0.75(0,4)(0,3)^2} \sqrt{\frac{0.3}{29000(50)(0,425)}} - 1 \right] = -0.007$ - USKdet Kabt /d= la/d= 1.125/17.7 = 0.064 60.2 :.04 Try LHXYX 1/2" × 6" 10mg - Seat anyle Flexure e = 1.125 + 0.75 - 4/8 - 3/8 = 0.4/375 dRn = 0.9 Fy Lota 2 (0.91(36)(4)(24) = 62.5 kps > Vw . 04 - web yeilding \$Rm = 1.0 Fy to (2.5 hours +26) =1.0(50)(0.3) (2.5 x 0.827 + 1.125) = 47.89 kips > V4 : 04

JMV Thesis - local web cripping la = 1.125/17.7 < 0.2 ger = \$0,4 + 12 [1+ (48 - 0.2) (1) 15] 1 = ++++ $= 0.75(0.4)[0.3]^{2} \left[1 + \left(\frac{4(1.15)}{17.7} - 0.2 \right) \left(\frac{0.1}{0.425} \right)^{1/5} \right] \sqrt{\frac{(2.8900)(50)(0.425)}{0.3}} = 39.94 \, u_{10}s$ > Vu i.ok - Angle shear yeriday BRN = \$0.6 Eylata = (1.0)(0,6)(36)(36)(12) = 64.8 kips > V4 1.04 - Weld Rupture $\Theta = O^{*}$ K=0 $e = 3/4^{"} + \frac{l_{5/2}}{l_{5/2}} = 3/4 + \frac{1.125}{l_{2}} = 1.3125 \text{ f}$ $a = e/L = 1.3125/8 = 0.164^{"}$ * C= 3.52 [Table 8-4] $D_{mm} = \frac{R_{4}}{6CC_{1}L} = \frac{28.67}{(a_{1}s_{2})(3.52)(1.0)(6)} = 2.46 \Rightarrow \frac{3}{16}$ Minumum wold = 1/4" is use 1/01 Sittet world - Summerry LHX 4x 14 x 0' - 4" (A36) W18×35 A 325 - ~ BOHS , 74" \$ L4×4×44×0'-6"(A36) Kesturn at top 14110

Member Force Envelope

RAM Da	AM Frame itaBase: R iilding Coo	MP T Mo	3.00 del walled			02/25/14 13:01:37
STEEL BEA			ot For Commercial Use.			
Beam N Level: C Fy (ksi) Length (umber: 69 office 9th F = 50.00 ft) = 20.00 Aodulus (k) Floor	Frame Number I-End (140.00,0. Beam Size = W21X5	.00)	J-End (160.00,	0.00)
INPUT PAF	RAMETEI	RS:				
			I-End		J-End	
Fixity	Major A	xis:	Fix		Fix	
	Minor A	xis:	Fix		Fix	
	Torsion:		Fix		Fix	
Rigid Er	nd Zone (in	ı):	0.00		0.00 (Ignore)	
Member	Force Out	put:	At Face of Joint			
P-Delta:		Yes	Scale Factor (DL):	1.20	Scale Factor (LL):	0.50
			Scale Factor (Roof):	1.00	Scale Factor (Snow):	1.00
Ground	Level:	Base				

LOAD COMBINATIONS: User Specified

No. of Specified Combinations: 98

MEMBER FORCE MAXIMA AND MINIMA

	P kips	Mmajor kip-ft	Mminor kip-ft	Vmajor kips	Vminor kips	Tors kip-ft
Max @ i:	0.00	93.13	0.00	30.42	0.00	0.00
LC:	36	51	4	15	24	19
Max @ j:	0.00	96.42	0.00	2.49	0.00	0.00
LC:	36	63	24	63	24	19
Maximum:	0.00	118.58	0.00	30.42	0.00	0.00
LC:	36	2	24	15	24	19
@ (ft):	0.00	10.00	19.40	0.61	0.61	0.00
Min @ i:	-0.00	-162.19	-0.00	-3.20	-0.00	-0.00
LC:	24	15	64	51	60	55
Min @ j:	-0.00	-185.86	-0.00	-31.88	-0.00	-0.00
LC:	24	3	60	3	60	55
Minimum:	-0.00	-185.86	-0.00	-31.88	-0.00	-0.00
LC:	24	3	60	3	60	55
@ (ft):	0.00	19.40	19.40	19.40	0.61	0.00

Member Force Envelope

RAM Da	AM Frame ataBase: RI ailding Cod	MP T Mod				02/25/14 13:01:37
STEEL BEA			t For Commercial Use. N:			
Beam N Level: C Fy (ksi) Length ($\begin{array}{l} \textbf{umber: 68} \\ \textbf{office 9th F} \\ = 50.00 \\ \textbf{(ft)} = 20.00 \\ \textbf{Modulus (k)} \end{array}$	loor	Frame Number I-End (120.00,0. Beam Size = W21X5	00)	J-End (140.00,	0.00)
INPUT PAP	RAMETER	RS:				
			I-End		J-End	
Fixity	Major Az	kis:	Fix		Fix	
	Minor A:	xis:	Fix		Fix	
	Torsion:		Fix		Fix	
Rigid Et	nd Zone (in):	0.00		0.00 (Ignore)	
Member	Force Out	put:	At Face of Joint			
P-Delta:		Yes	Scale Factor (DL):	1.20	Scale Factor (LL):	0.50
			Scale Factor (Roof):	1.00	Scale Factor (Snow):	1.00
Ground	Level:	Base				

LOAD COMBINATIONS: User Specified No. of Specified Combinations: 98

MEMBER FORCE MAXIMA AND MINIMA

	P kips	Mmajor kip-ft	Mminor kip-ft	Vmajor kips	Vminor kips	Tors kip-ft
Max @ i:	0.00	101.49	0.00	30.78	0.00	0.00
LC:	36	51	60	15	55	19
Max @ j:	0.00	88.47	0.00	2.68	0.00	0.00
LC:	36	63	60	63	55	19
Maximum:	0.00	119.36	0.00	30.78	0.00	0.00
LC:	36	2	60	15	55	19
@ (ft):	0.00	10.00	19.40	0.61	0.61	0.00
Min @ i:	-0.00	-175.14	-0.00	-3.01	-0.00	-0.00
LC:	24	15	24	51	8	55
Min @ j:	-0.00	-172.05	-0.00	-31.52	-0.00	-0.00
LC:	24	3	24	3	8	55
Minimum:	-0.00	-175.07	-0.00	-31.52	-0.00	-0.00
LC:	24	15	24	3	8	55
@ (ft):	0.00	0.61	19.40	19.40	0.61	0.00

Joint Code Check

RAM Frame v14.05.03.00 DataBase: RMP T Model walled Building Code: IBC

02/24/14 19:11:43 Steel Code: AISC360-10 LRFD

Story Number: Joint Number: 130

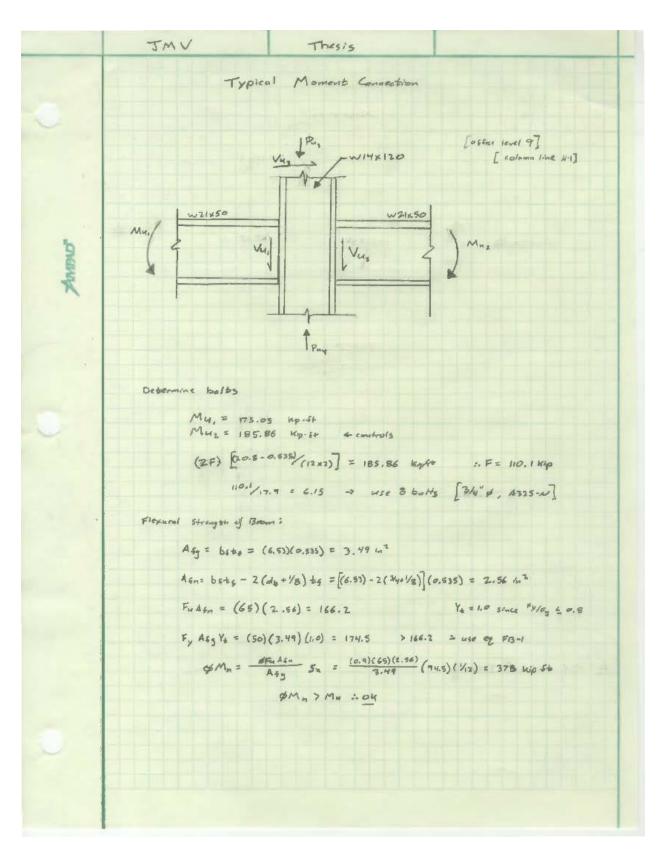
Final Design

No Web Plate Required No Top Flange Stiffener Required No Bot Flange Stiffener Required

Joint Data and Material Properties

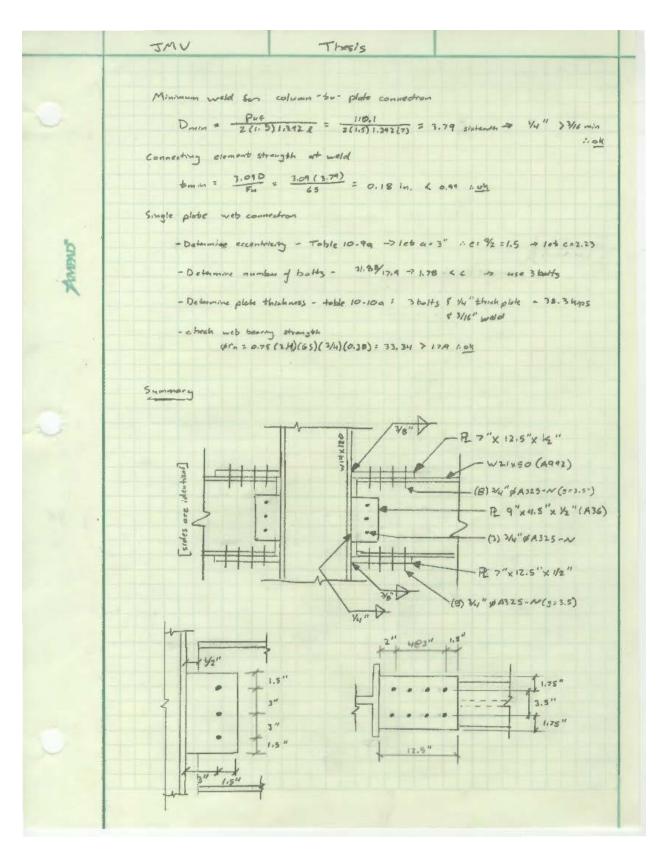
Web Plate Norr	ninal Yield (ksi) 🔄	36.00		
Stiffener Nomin	nal Yield (ksi)	36.00		
	Size	Plan Angle	Elev Angle	Yield(ksi)
Col. At Jnt:	W14X120	0.00	10	50.00
Beam SideA :	W21X50	0.00	0.00	50.00
Beam SideB :	W21X50	180.00	0.00	50.00

Criteria


Force on column flange is from beam moment, axial and shear forces. Use actual beam moments to determine panel zone shear at the joint. Optimize design of each stiffener at a joint

Results

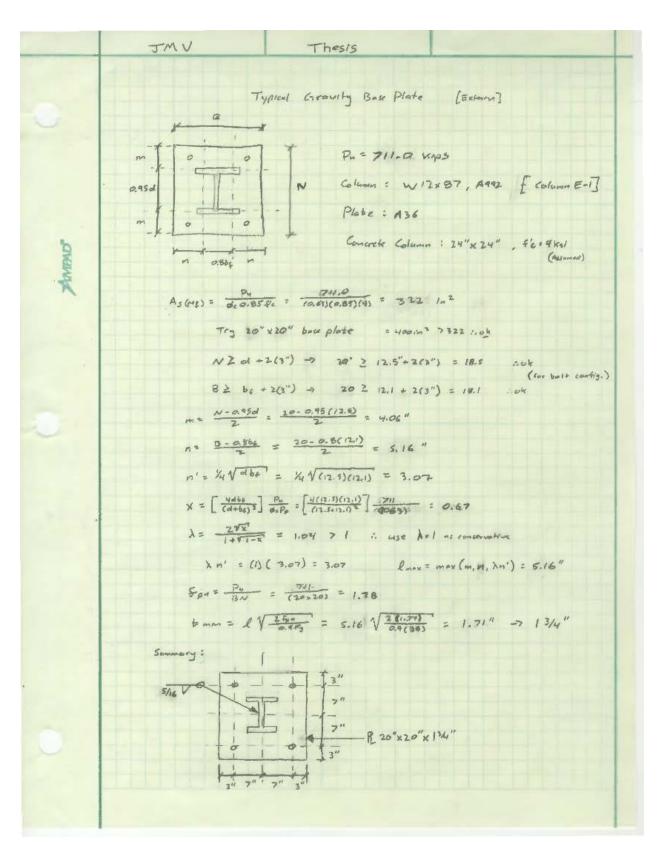
Panel Zone


Side	<u>Moment</u>	<u>Axial</u>	<u>Shear</u>	Load Combination
	(kip-ft)	(kip)	(kip)	
Α	80.00	-0.00	3.52	1.200 D + 1.200 ND1 + 0.500 Lp + 0.500 NL1 +
				1.600 W1
В	-185.22	-0.00	-32.98	1.200 D + 1.200 ND1 + 0.500 Lp + 0.500 NL1 +
				1.600 W1
Shear For	rce In Column At	ove Joint(ki	ip)	= 22.35
Controlli	ng Shear Force (k	ip)		= 134.94
Column '	Web Capacity w/o	o Web Plate	(kip)	= 281.57

Compression			Side A			Side B		
	<u>Flange</u>	Force	<u>LCo</u>	<u>Cap.</u>	Force	<u>LCo</u>	Cap.	Stiffen
		(kip)		(kip)	(kip)		(kip)	
Local Web Yld	Тор	59.9	57	242.9	57.1	69	242.9	NO
	Bot	103.8	21	242.9	109.7	9	242.9	NO
Web Crippling	Тор	59.9	57	334.9	57.1	69	334.9	NO
	Bot	103.8	21	334.9	109.7	9	334.9	NO
Web Buckling	Bot	42.2	5	467.8	74.8	5	467.8	NO
Tension			Side A			Side B		
	<u>Flange</u>	Force	LCo	Cap.	Force	LCo	<u>Cap.</u>	Stiffen
		(kip)		(kip)	(kip)		(kip)	
Local Web Yld	Тор	103.8	21	242.9	109.7	9	242.9	NO
	Bot	59.9	57	242.9	57.1	69	242.9	NO
Flange Bend.	Тор	103.8	21	248.5	109.7	9	248.5	NO
		59.9	57		57.1	69	248.5	NO

	JMV Thesis
	Flange Plate Tampile Yeilding lab \$p=0.50"
	ORN = OFYAq = (0.9) (36) (0.58) (wp) 2 Rus
\sim	$P_{44} = \frac{M_{14}}{d + 5p} = \frac{105.86(13)}{(20.9 + 0.30)} = 104.7, \ \text{Kips}$
	$I_{0} = (0.7)(34)(0.75) = 6.46'' - 7''$
	Flange Plate Tensile Rupture
	ORN = OFU Ac = (0.75)(50)[7-2(34+1/8)](1/2) = 114.2 Kips > 104.7 LON
"COMINA	Flange Plate Blook Shear
Ann	ØRn= ØUbs Fu Ant + min (Ø0.6Fy Agu, Ø0.6Fu Anu)
~	
	$F_{y}A_{gv} = (36)(10.5)(1/2) = 189$ $F_{u}A_{uv} = (58)(18.5 - 4.5(3/4 + 1/8))(1/2) = 190.3$
	Case 1: \$Rn = [\$175 (1.0)(58)(1.75 - 1/2 (7/8))(1/2) + 0.75 (0.6) (189)] +2 = 227.2 Wips
	(ase 2: \$Rm = [0.75(1.0)(5B)(3.5-(7/0))(V2)] + 0.75(0.6)(1B4) x2 = 227,2 Wips
0	Case 35 \$\$R\$ 2 [0.75(1.0)(58)(1.75+3.5-1.5(78))(1/2)] + 0.75(0.6)(189) = 170.7 Kips
	ØRn > Ru (170.7 > 104.7) + 04
	Beam Flange Block Shear
	Fy Agv = (50)(10.5) (0.535) = 280.9
	$F_{*}A_{NV} = (65)(10.5 - 3.5(3/4 + VB))(0.535) = 2.5B.6$
	\$\$\$\$\$\$ = [\$\$\$\$ 11.0165) (1.52 - 1/2 (441/8)) (0.535) + \$\$\$\$ (0.6) 258.6] * 2 = 289.2 Kips
	\$R. > R. : of (284,2 > 110.1 Kips)
	Compression Flange Plate & connection - Flewer Buchting
	K=0.65 [Table C-A-7,1] $\frac{KL}{\Gamma} = \frac{(0.65)(2)}{(1/2)/V(1)} = 7.01 \le 25 \ \text{if } f_{e} = F_{y}$
	L=2.0"
	\$P= \$\$Fy Ag = (0.9)(36)(7)(1/2) = 113.4 Kips > 110.1 Kips 1.04
	Compression Flowige Plate & commection - Local Bucklish
-	5/20 ≤ 233/10 - 3.5/12 ≤ 253/158 -> 7 ≤ 42.2 :.04
0	

```
JMV
                                           Thesis
                Bult check
                       drn= 17.9 Kip/bolt [Toble 7-1]
Brn= 44.0 (12) = 22.0 Mp/bolt [Toble 7-5]
                       UFA= 49.4 (0.535) = 26.43 Kip/hold [Table 7-5]
                      $ = 2 (17,9) + 6(17,9) = 143.2 mips > 110.1 mips 1.04
               Florge local bending of column
                    $$R = (0.9)(6.25) $$. F== (0.9) (6.25) (0.94) 2 (=) = 248.5 kips > 110 kips = wh
CIVEIND
               Webs local Yeilding of Column
                     # Rn = $ Fyc (5Kan+ 26) twe = (1.0) (50) (5 = 1.54 + 1/2) (0.59) = 241.9 K 7110 W .: 04
              Web cripping of column
                    $Rn = $ 0.80 $= 2 [1+3 ($ 1/2) ( * 1/20) 1.5 ] V EFrente
                           = 0.75(0.0) (0.54) 2 [1+3 (0.54) (0.5%, 44) 1.5] 1 2000 (10) (0.44) = 333 K >110 :.04
              web bucking of column
                    dRn = $ 24twe VEFye /h = (0.4)24(0.59) V2900(50) /11.387 = 469K>110K ad
              Panel zone shear yeilding
                       controling load combos 1.20+0.51+1.60
                             M1=-185.86
                           M12= 80.00
                        EF4 = Mui + Muz - Vu & ORV
                          ZF4 = (185.86+80) (12) / (0.95x200) -22.35 = 139.1 Kips
                      Pe = Py = Fy Ag = (50) (35.3) = 1765 Kip
                                                                    Preo. 4 Pe
                        Pr= 165,76 Kps
                        $Ru = $0.6Fyde + = (0.9)(0.6)(50)(14.5)(0.54) = 230.98 Kips
                             139.1 < 2)0.98 -> IFu & get : of
                                                      [ Doos not need doubler plate]
```

Gravity Column Design

RAN DataBase Building	el v14.05.03 :: RMP T Mc Code: IBC	del walled			Steel Code: A	Page 2/2 02/24/14 19:17:33 AISC 360-10 LRFD
Academ tory level Garage	c License. N	ot For Com	nercial Use.			
	= 5		Column Size		= W12X8	27
Orientation (de	g.) = 0	.0			W1270	
NPUT DESIGN F	ARAMETE	RS:				
			X-Axis		Y-Axis	
Lu (ft)			16.75		16.75	
К					1	
Braced Against	Joint Transl	ation	Yes		Yes	
Column Eccent	ricity (in)	Тор _	8.75		8.55	
		Bottom	0.00		0.00	
ONTROLLING	COLUMN I	OADS - Ski	n-Load Case 1.			
Olymon and a second sec	COLUMN	Jorrbo - Shi	p Doud Cuse 1. Dead		Live	Roof
Axial (kip)					186.74	0.00
		ft)			0.00	0.00
		ft)			-1.11	0.00
F		ft)			0.00	0.00
		ft)			0.00	0.00
Single curvatur	e about X-Az	xis				
Single curvatur						
ALCULATED P	ARAMETE	RS: (1.2DL	+ 1.6LL + 0.5RF)			
Pu (kip)	= 7	10.99		=	841.74	
Mux (kip-ft)		0.00	0.90*Mnx (kip-ft)	-	461.00	
Muy (kip-ft)		5.67	0.90*Mny (kip-ft)	i = i	226.50	
Rm	=	1.00				
Cbx	=	1.00				
Cmx	=	1.00	Cmy	=	0.60	
Cmx Pex (kip)			Cmy Pey (kip)	=		

INTERACTION EQUATION

Pu/0.90*Pn = 0.845Eq H1-1a: 0.845 + 0.000 + 0.022 = 0.867

Appendix F

Cost/Scheduling Analysis

Steel Estimate

	Steel Deck - 05 31 13.50 (5300)									
Level	SF	Material	Labor	Equipment	Total	Tot Incl O&P				
Level	ЪГ	2.05	0.46	0.04	2.55	3.14				
P6	24893	51030.65	11450.78	995.72	63477.15	78164.02				
4th	23058	47268.90	10606.68	922.32	58797.90	72402.12				
5th	23058	47268.90	10606.68	922.32	58797.90	72402.12				
6th	23058	47268.90	10606.68	922.32	58797.90	72402.12				
7th	23058	47268.90	10606.68	922.32	58797.90	72402.12				
8th	23058	47268.90	10606.68	922.32	58797.90	72402.12				
9th	23058	47268.90	10606.68	922.32	58797.90	72402.12				
10th	23058	47268.90	10606.68	922.32	58797.90	72402.12				
11th	22102	45309.10	10166.92	884.08	56360.10	69400.28				
Roof	22102	45309.10	10166.92	884.08	56360.10	69400.28				
Pent	4000	8200.00	1840.00	160.00	10200.00	12560.00				
Total	234503	\$480,731.15	\$107,871.38	\$9,380.12	\$597,982.65	\$736,339.42				

	Welded Wire Fabric - 3 22 11.10 (0100)									
Level	C.S.F.	Material	Labor	Equipment	Total	Tot Incl O&P				
Level	С.З.Г.	14.5	23	0	37.5	54				
P6	248.93	3609.49	5725.39	0.00	9334.88	13442.22				
4th	230.58	3343.41	5303.34	0.00	8646.75	12451.32				
5th	230.58	3343.41	5303.34	0.00	8646.75	12451.32				
6th	230.58	3343.41	5303.34	0.00	8646.75	12451.32				
7th	230.58	3343.41	5303.34	0.00	8646.75	12451.32				
8th	230.58	3343.41	5303.34	0.00	8646.75	12451.32				
9th	230.58	3343.41	5303.34	0.00	8646.75	12451.32				
10th	230.58	3343.41	5303.34	0.00	8646.75	12451.32				
11th	221.02	3204.79	5083.46	0.00	8288.25	11935.08				
Roof	221.02	3204.79	5083.46	0.00	8288.25	11935.08				
Pent	40	580.00	920.00	0.00	1500.00	2160.00				
Total	2345.03	\$34,002.94	\$53,935.69	\$0.00	\$87,938.63	\$126,631.62				

	Placing Concrete - 03 31 13.70 (1400)									
Loval	C.Y.	Material	Labor	Equipment	Total	Tot Incl O&P				
Level	C.T.	0	18	5.55	23.55	35				
P6	326.37	0.00	5874.75	1811.38	7686.13	11423.12				
4th	302.32	0.00	5441.69	1677.85	7119.54	10581.06				
5th	302.32	0.00	5441.69	1677.85	7119.54	10581.06				
6th	302.32	0.00	5441.69	1677.85	7119.54	10581.06				
7th	302.32	0.00	5441.69	1677.85	7119.54	10581.06				
8th	302.32	0.00	5441.69	1677.85	7119.54	10581.06				
9th	302.32	0.00	5441.69	1677.85	7119.54	10581.06				
10th	302.32	0.00	5441.69	1677.85	7119.54	10581.06				
11th	289.78	0.00	5216.07	1608.29	6824.36	10142.36				
Roof	289.78	0.00	5216.07	1608.29	6824.36	10142.36				
Pent	52.44	0.00	944.00	291.07	1235.07	1835.56				
Total	3074.595	\$0.00	\$55,342.71	\$17,064.00	\$72,406.71	\$107,610.82				

		Finishing	Concrete - 03	35 13.30 (025	0)	
Level	SF	Material	Labor	Equipment	Total	Tot Incl O&P
Level	Эг	0	0.58	0.03	0.61	0.96
P6	24893	0.00	14437.94	746.79	15184.73	23897.28
4th	23058	0.00	13373.64	691.74	14065.38	22135.68
5th	23058	0.00	13373.64	691.74	14065.38	22135.68
6th	23058	0.00	13373.64	691.74	14065.38	22135.68
7th	23058	0.00	13373.64	691.74	14065.38	22135.68
8th	23058	0.00	13373.64	691.74	14065.38	22135.68
9th	23058	0.00	13373.64	691.74	14065.38	22135.68
10th	23058	0.00	13373.64	691.74	14065.38	22135.68
11th	22102	0.00	12819.16	663.06	13482.22	21217.92
Roof	22102	0.00	12819.16	663.06	13482.22	21217.92
Pent	4000	0.00	2320.00	120.00	2440.00	3840.00
Total	234503	\$0.00	\$136,011.74	\$7,035.09	\$143,046.83	\$225,122.88

		Concrete	Topping - 03	30 53.40 (330	0)	
Loval	сг	Material	Labor	Equipment	Total	Tot Incl O&P
Level	S.F.	1.24	0.88	0.27	2.39	3.09
P6	24893	30867.32	21905.84	6721.11	59494.27	76919.37
4th	23058	28591.92	20291.04	6225.66	55108.62	71249.22
5th	23058	28591.92	20291.04	6225.66	55108.62	71249.22
6th	23058	28591.92	20291.04	6225.66	55108.62	71249.22
7th	23058	28591.92	20291.04	6225.66	55108.62	71249.22
8th	23058	28591.92	20291.04	6225.66	55108.62	71249.22
9th	23058	28591.92	20291.04	6225.66	55108.62	71249.22
10th	23058	28591.92	20291.04	6225.66	55108.62	71249.22
11th	22102	27406.48	19449.76	5967.54	52823.78	68295.18
Roof	22102	27406.48	19449.76	5967.54	52823.78	68295.18
Pent	4000	4960.00	3520.00	1080.00	9560.00	12360.00
Total	234503	\$290,783.72	\$206,362.64	\$63,315.81	\$560,462.17	\$724,614.27

		Shear	Studs - 05 05	23.85 (0030)		
Loval	#	Material	Labor	Equipment	Total	Tot Incl O&P
Level	#	0.56	0.88	0.5	1.94	2.77
P6	1505	842.80	1324.40	752.50	2919.70	4168.85
4th	1565	876.40	1377.20	782.50	3036.10	4335.05
5th	1493	836.08	1313.84	746.50	2896.42	4135.61
6th	1481	829.36	1303.28	740.50	2873.14	4102.37
7th	1481	829.36	1303.28	740.50	2873.14	4102.37
8th	1481	829.36	1303.28	740.50	2873.14	4102.37
9th	1481	829.36	1303.28	740.50	2873.14	4102.37
10th	1481	829.36	1303.28	740.50	2873.14	4102.37
11th	1481	829.36	1303.28	740.50	2873.14	4102.37
Roof	1625	910.00	1430.00	812.50	3152.50	4501.25
Pent	0	0.00	0.00	0.00	0.00	0.00
Total	15074	\$8,441.44	\$13,265.12	\$7,537.00	\$29,243.56	\$41,754.98

		•	-		Structura	l Steel - Be	eams and G	irders (Typica	al Floor) - 05 1	L2 23.77 (0900		•
	Men	hor		#	Length	L.F.	Tons	Material	Labor	Equipment	Total	Tot Incl O&P
	wen	IDEI		#	Length	L.F.	TOHS	2750	455	131	3336	4000
W	8	х	10	1	9.28	9.28	0.05	127.60	21.11	6.08	154.79	185.60
W	10	x	12	1	13.58	13.58	0.08	224.07	37.07	10.67	271.82	325.92
W	10	х	12	1	14	14	0.08	231.00	38.22	11.00	280.22	336.00
W	12	х	14	1	21.2	21.2	0.15	408.10	67.52	19.44	495.06	593.60
W	12	x	19	4	12	48	0.46	1254.00	207.48	59.74	1521.22	1824.00
W	12	х	19	1	22.06	22.06	0.21	576.32	95.35	27.45	699.13	838.28
W	12	х	19	1	22.56	22.56	0.21	589.38	97.52	28.08	714.97	857.28
W	14	x	22	1	18.28	18.28	0.20	552.97	91.49	26.34	670.80	804.32
W	14	x	22	1	18.56	18.56	0.20	561.44	92.89	26.74	681.08	816.64
W	14	x	22	1	20	20	0.22	605.00	100.10	28.82	733.92	880.00
W	14	x	22	1	21.27	21.27	0.23	643.42	106.46	30.65	780.52	935.88
w	14	x	22	1	22	22	0.24	665.50	110.11	31.70	807.31	968.00
w	14	x	22	1	22.28	22.28	0.24	673.97	111.51	32.11	817.59	980.32
W	14	x	26	1	15.5	15.5	0.20	554.13	91.68	26.40	672.20	806.00
W	14	x	34	1	20	20	0.34	935.00	154.70	44.54	1134.24	1360.00
W	16	x	26	1	21	21	0.27	750.75	124.22	35.76	910.73	1092.00
w	16	x	26	5	21.9	109.5	1.42	3914.63	647.69	186.48	4748.80	5694.00
W	16	x	26	1	24	24	0.31	858.00	141.96	40.87	1040.83	1248.00
w	16	x	31	1	22.84	22.84	0.35	973.56	161.08	46.38	1181.01	1416.08
w	18	x	35	1	18.35	18.35	0.32	883.09	146.11	42.07	1071.27	1284.50
w	18	x	35	17	20	340	5.95	16362.44	2707.25	779.45	19849.14	23799.94
w	18	x	35	1	20.24	20.24	0.35	974.05	161.16	46.40	1181.61	1416.80
w	18	x	35	1	29.2	29.2	0.51	1405.24	232.51	66.94	1704.69	2043.99
w	18	x	35	1	30	30	0.53	1443.74	238.88	68.78	1751.39	2099.99
w	18	x	35	1	32.15	32.15	0.56	1547.21	255.99	73.70	1876.91	2250.49
w	18	x	35	46	40	1840	32.20	88549.68	14651.00	4218.20	107418.88	128799.68
w	18	x	40	4	20	80	1.60	4399.98	728.00	209.60	5337.58	6399.98
W	18	x	40	2	20	44	0.88	2419.99	400.40	115.28	2935.67	3519.99
w	18	x	40	4	40	160	3.20	8799.97	1456.00	419.20	10675.17	12799.97
w	18	x	46	1	22	22	0.51	1391.49	230.23	66.29	1688.01	2023.99
w	21	x	44	2	20	40	0.88	2419.99	400.40	115.28	2935.67	3519.99
W	21	x	44	1	30.25	30.25	0.67	1830.12	302.80	87.18	2220.10	2661.99
W	21	x	50	8	20	160	4.00	10999.96	1820.00	524.00	13343.96	15999.96
W	21	x	55	1	30	30	0.83	2268.74	375.38	108.08	2752.19	3299.99
C	24 8	x	12	4	10	40	0.83	632.50	104.65	30.13	767.28	920.00
	5x6x5		23	4	16.71	66.84	0.23	2145.06	354.91	102.18	2602.16	3120.09
				Tota	l		59.48	\$163,572.09	\$27,063.83	\$7,792.00	\$198,427.93	\$237,923.28
Not	e - V	alue	s var	y from	the base e							
							0 to 30 plf	0.00	0.00	0.00	0.00	0.00
							81 to 65 plf	-0.01	0.00	0.00	-0.01	-0.01
							5 to 100 plf	-5.65	0.00	0.00	-5.65	-6.25
				(Cost for Me	mbers 101	to 387 plf	55.50	0.00	0.00	55.50	61.00

			·		-	Stru	ctural Stee	I - Columns (1	Typical Floor)	-		
	Men	aha			#	L.F.	Tons	Material	Labor	Equipment	Total	Tot Incl O&P
	wen	ibe			#	L.F.	TOTIS	2750	455	131	3336	4000
147	10		33		14	252.2	F 01	15001 00	2644.14	701 20	10200 44	22245 14
W	10	X			14	352.2	5.81	15981.02		761.28	19386.44	23245.14
W	10	Х	39		6	153.1	2.99	8209.96	1358.38	391.09	9959.43	11941.77
W	10	X	45		2	51.4	1.16	3180.36	526.21	151.50	3858.07	4625.99
W	10	X	49		5	131.4	3.22	8853.04	1464.78	421.73	10739.55	12877.17
W	10	X	54		3	81.1	2.19	6021.65	996.31	286.85	7304.82	8758.78
W	10	X	60		1	26.3	0.79	2169.74	359.00	103.36	2632.10	3155.99
W	10	Х	68		1	26.3	0.89	2454.00	406.86	117.14	2978.00	3571.21
W	10	Х	77		2	54.8	2.11	5790.03	959.96	276.38	7026.37	8426.01
W	10	Х	88		1	27.4	1.21	3308.59	548.55	157.93	4015.07	4814.87
W	12	Х	40		37	628.5	12.57	34567.37	5719.35	1646.67	41933.39	50279.87
W	12	Х	45		9	188.7	4.25	11675.77	1931.82	556.19	14163.78	16982.96
W	12	Х	50		2	50.3	1.26	3458.11	572.16	164.73	4195.01	5029.99
W	12	х	53		18	339.6	9.00	24748.26	4094.73	1178.92	30021.91	35997.51
W	12	Х	58		14	188.7	5.47	15048.77	2489.90	716.87	18255.54	21889.15
W	12	Х	65		12	307.4	9.99	27417.43	4545.68	1308.76	33271.86	39899.56
W	12	х	72		7	107.4	3.87	10610.75	1759.21	506.50	12876.47	15441.44
W	12	Х	79		17	293.5	11.59	31815.94	5274.93	1518.72	38609.58	46300.54
W	12	х	87		11	250.2	10.88	29868.68	4952.08	1425.76	36246.53	43466.78
W	12	Х	96		3	78.8	3.78	10380.23	1720.99	495.49	12596.72	15105.96
W	12	х	106		6	121	6.41	17991.67	2917.92	840.10	21749.69	26043.19
W	12	Х	120		5	135.9	8.15	22876.05	3710.07	1068.17	27654.29	33113.39
W	12	х	136		3	82.3	5.60	15700.70	2546.36	733.13	18980.19	22726.98
W	12	х	152		1	27.4	2.08	5842.17	947.49	272.79	7062.46	8456.63
W	14	х	43		11	190.4	4.09	11257.36	1862.59	536.26	13656.21	16374.36
W	14	х	48		2	50.3	1.21	3319.79	549.28	158.14	4027.21	4828.79
W	14	х	53		1	25.2	0.67	1836.44	303.85	87.48	2227.77	2671.19
W	14	х	61		6	113.2	3.45	9494.62	1570.93	452.29	11517.84	13810.37
W	14	х	68		6	113.2	3.85	10562.45	1751.20	504.19	12817.85	15371.15
W	14	х	90		6	151	6.80	18647.86	3091.73	890.15	22629.73	27137.53
W	14	х	99		7	101.8	5.04	13829.05	2292.79	660.12	16781.97	20124.91
W	14	х	109		5	129.1	7.04	19739.36	3201.36	921.71	23862.42	28572.99
W	14	х	120		51	648.3	38.90	109128.34	17698.59	5095.64	131922.57	157964.78
W	14	х	132		7	147.4	9.73	27293.03	4426.42	1274.42	32993.87	39507.03
W	14	х	145		38	505.4	36.64	102797.73	16671.88	4800.04	124269.65	148801.13
W	14	х	176		38	547.9	48.22	135267.74	21937.92	6316.19	163521.85	195801.93
	Total 280.89					280.89	\$781,144.07	\$127,805.41	\$36,796.72	\$945,746.19	\$1,133,117	
Not	e - V	alue	es vai	ry from	the base e	estimate as	follows:					
	Cost for Members 0 to 30 plf				0.00	0.00	0.00	0.00	0.00			
	Cost for Members 31 to 65 plf				-0.01	0.00	0.00	-0.01	-0.01			
	Cost for Members 66 to 100 plf					-5.65	0.00	0.00	-5.65	-6.25		
			_	C	Cost for M	embers 101	L to 387 plf	55.50	0.00	0.00	55.50	61.00

		Fire Proofi	ng - Beams -	07 81 16.10 (4	00)	
Loval	SF	Material	Labor	Equipment	Total	Tot Incl O&P
Level	Эг	0.53	0.62	0.09	1.24	1.68
P6	15255	8085.15	9458.10	1372.95	18916.20	25628.40
4th	15470	8199.10	9591.40	1392.30	19182.80	25989.60
5th	15745	8344.85	9761.90	1417.05	19523.80	26451.60
6th	15470	8199.10	9591.40	1392.30	19182.80	25989.60
7th	15470	8199.10	9591.40	1392.30	19182.80	25989.60
8th	15470	8199.10	9591.40	1392.30	19182.80	25989.60
9th	15470	8199.10	9591.40	1392.30	19182.80	25989.60
10th	15470	8199.10	9591.40	1392.30	19182.80	25989.60
11th	15470	8199.10	9591.40	1392.30	19182.80	25989.60
Roof	16120	8543.60	9994.40	1450.80	19988.80	27081.60
Pent	3800	2014.00	2356.00	342.00	4712.00	6384.00
Total	159210	\$84,381.30	\$98,710.20	\$14,328.90	\$197,420.40	\$267,472.80

			Fire Proo	fing - Column	s - 07 81 16.1	0 (800)	•	
Loval	Hojaht	#	SF	Material	Labor	Equipment	Total	Tot Incl O&P
Level	Height	#	Эг	1.2	1.32	0.19	2.71	3.67
P6	15.92	48	4737	5684.16	6252.58	899.99	12836.73	17384.06
4th	9.83	48	2926	3511.68	3862.85	556.02	7930.54	10739.89
5th	12.83	48	3819	4583.04	5041.34	725.65	10350.03	14016.46
6th	11.75	48	3497	4196.16	4615.78	664.39	9476.33	12833.26
7th	11.75	48	3497	4196.16	4615.78	664.39	9476.33	12833.26
8th	11.75	48	3497	4196.16	4615.78	664.39	9476.33	12833.26
9th	11.75	48	3497	4196.16	4615.78	664.39	9476.33	12833.26
10th	11.75	48	3497	4196.16	4615.78	664.39	9476.33	12833.26
11th	11.75	48	3497	4196.16	4615.78	664.39	9476.33	12833.26
Roof	11.75	48	3497	4196.16	4615.78	664.39	9476.33	12833.26
Pent	21.17	13	1706	2047.24	2251.96	324.15	4623.35	6261.14
	Total			\$45,199.24	\$49,719.16	\$7,156.55	\$102,074.95	\$138,234.34

JMV Thesis Original Design Typical Slob remforcing [Area = 23058 ft] & Beans But: #4's @ 12" O.C. cachung -> (1)#4 = 0.668 16/5t Beams! Typically include (9) #9 bars \$ #4 strops @ 12" oc ->1)#9 = 3.4 16/5+ Top: 25'5 @ 14" O.C. over being (0) -> (1) #5 = 1,043 16/4+ Assume bors are 12' long Typical sure way bay (20) 15 (#4) - 12' long 14 (# 5) - 12' long 30 (16) - 12' long -> (1) 16 = 1.502 16/5t Total = (23058 ft) ([2×0.668] 10/5+2) + (12 ft) (1.043 4/4+) (604 ft) (13/44) + 20(12 ft) [(16)(0.668)+14(1.043)+(30)(1.502)] + (604+60) [9× 3.4 + (13') (0.668)] +10% mise Total 2 59.59 165 (sirb) + 28,70 lbs (bams) Typical Column Reinforcing [based on 24"x 24"] vertuels: ~ 6 #11 continuous (1) #11 -> 5.313 16/56 ties : #4@ 20" O.C. U) #4 7 0.668 16/50 Remaining per food a 6(5.313) + 8(0.668) (39/12") = 40.78 16/5+ 10 Typical Shear wall Remaining #4 bors at 12" O.C. each way (1)#4 -> 0.668 16/fi (4) # 11 bars art comments feelges 11 +11 -> 5-213 6/64 - wells are 88 St in langth on much level - walls require 8 bisundary elements at each love! Total Per Sost of height = (8)(4) (5.313) + (86') (2.0.668 1/4+)(2) Total = 400 lbs / st ghought Typical Post Tensiming Remberry 27.04 Hender -> 20 tendens per beam 7 540 K/Beom (604 Ineal \$4 beam) (20) = 12080 \$t of ferding Y2" of tanglous -> 0.52 Ha/St Tutal = (12080) (0.52) = 6282165

Concrete Estimate

				Material	Labor	Equiptment	Total	Tot Incl O&
eight	Size	#	S.F.S.A	1.58	6.45	0.00	8.03	12.35
5.92 24	4"x24"	54	6876	10864.08	44350.20	0.00	55214.28	84918.60
	30" ф	12	1500	2370.17	9675.71	0.00	12045.89	18526.36
	2"x24"	8	764	1207.12	4927.80	0.00	6134.92	9435.40
9.83 24	4"x24"	40	3147	4971.73	20296.00	0.00	25267.73	38861.33
3	30" ф	9	695	1098.22	4483.25	0.00	5581.47	8584.21
	2"x24"	8	472	745.76	3044.40	0.00	3790.16	5829.20
2.83 24	4"x24"	40	4107	6488.53	26488.00	0.00	32976.53	50717.33
3	30" ф	9	907	1433.27	5851.02	0.00	7284.29	11203.12
12	2"x24"	8	616	973.28	3973.20	0.00	4946.48	7607.60
1.75 24	4"x24"	40	3760	5940.80	24252.00	0.00	30192.80	46436.00
3	30" ф	9	831	1312.28	5357.10	0.00	6669.39	10257.40
	2"x24"	8	564	891.12	3637.80	0.00	4528.92	6965.40
1.75 24	4"x24"	40	3760	5940.80	24252.00	0.00	30192.80	46436.00
3	30" ф	9	831	1312.28	5357.10	0.00	6669.39	10257.40
	2"x24"	8	564	891.12	3637.80	0.00	4528.92	6965.40
1.75 24	4"x24"	40	3760	5940.80	24252.00	0.00	30192.80	46436.00
3	30" ф	9	831	1312.28	5357.10	0.00	6669.39	10257.40
	2"x24"	8	564	891.12	3637.80	0.00	4528.92	6965.40
1.75 24	4"x24"	40	3760	5940.80	24252.00	0.00	30192.80	46436.00
3	30" ф	9	831	1312.28	5357.10	0.00	6669.39	10257.40
12	2"x24"	8	564	891.12	3637.80	0.00	4528.92	6965.40
1.75 24	4"x24"	40	3760	5940.80	24252.00	0.00	30192.80	46436.00
3	30" ф	9	831	1312.28	5357.10	0.00	6669.39	10257.40
12	2"x24"	8	564	891.12	3637.80	0.00	4528.92	6965.40
1.75 24	4"x24"	40	3760	5940.80	24252.00	0.00	30192.80	46436.00
3	30" ф	9	831	1312.28	5357.10	0.00	6669.39	10257.40
12	2"x24"	8	564	891.12	3637.80	0.00	4528.92	6965.40
1.75 24	4"x24"	40	3760	5940.80	24252.00	0.00	30192.80	46436.00
3	30" ф	5	461	729.05	2976.17	0.00	3705.21	5698.55
	.8"x18"	4	282	445.56	1818.90	0.00	2264.46	3482.70
12	2"x24"	8	564	891.12	3637.80	0.00	4528.92	6965.40
1.17 24	4"x24"	10	1693	2675.47	10922.00	0.00	13597.47	20912.67
18	8"x18"	5	635	1003.30	4095.75	0.00	5099.05	7842.25
12	2"x24"	8	1016	1605.28	6553.20	0.00	8158.48	12547.60
Total				58423				

		-	Formwork	- Exterior Bea	ams - 03 11 13	.20 (1500)	•	•
Laval	Cine			Material	Labor	Equiptment	Total	Tot Incl O&P
Level	Size	L.F.	S.F.S.A	2.47	8.10	0.00	10.57	16.00
P6	24"x20"	86	401	991.29	3250.80	0.00	4242.09	6421.33
	36"x24"	145	918	2268.28	7438.50	0.00	9706.78	14693.33
4th	24"x20"	86	401	991.29	3250.80	0.00	4242.09	6421.33
	36"x24"	145	918	2268.28	7438.50	0.00	9706.78	14693.33
5th	24"x20"	86	401	991.29	3250.80	0.00	4242.09	6421.33
	36"x24"	145	918	2268.28	7438.50	0.00	9706.78	14693.33
6th	24"x20"	86	401	991.29	3250.80	0.00	4242.09	6421.33
	36"x24"	145	918	2268.28	7438.50	0.00	9706.78	14693.33
7th	24"x20"	86	401	991.29	3250.80	0.00	4242.09	6421.33
	36"x24"	145	918	2268.28	7438.50	0.00	9706.78	14693.33
8th	24"x20"	86	401	991.29	3250.80	0.00	4242.09	6421.33
	36"x24"	145	918	2268.28	7438.50	0.00	9706.78	14693.33
9th	24"x20"	86	401	991.29	3250.80	0.00	4242.09	6421.33
	36"x24"	145	918	2268.28	7438.50	0.00	9706.78	14693.33
10th	24"x20"	86	401	991.29	3250.80	0.00	4242.09	6421.33
	36"x24"	145	918	2268.28	7438.50	0.00	9706.78	14693.33
11th	24"x20"	86	401	991.29	3250.80	0.00	4242.09	6421.33
	36"x24"	145	918	2268.28	7438.50	0.00	9706.78	14693.33
Roof	24"x20"	86	401	991.29	3250.80	0.00	4242.09	6421.33
	36"x24"	166	1051	2596.79	8515.80	0.00	11112.59	16821.33
Pent	18"x24"	160	773	1910.13	6264.00	0.00	8174.13	12373.33
	Total 14103			\$34,834.41	\$114,234.30	\$0.00	\$149,068.71	\$225,648.00
Note -	Note - Table assumes 8" thick slab							

			Formwork - S	lab - 03 11 13.	35 (1100)		
Loval	Total S.F.	S.F.S.A	Material	Labor	Equiptment	Total	Tot Incl O&P
Level	Total S.F	3.F.3.A	1.46	3.93	0.00	5.39	8.05
P6	24893	21781	31800.81	85600.80	0.00	117401.61	175340.07
4th	23058	20176	29456.60	79290.70	0.00	108747.29	162414.79
5th	23058	20176	29456.60	79290.70	0.00	108747.29	162414.79
6th	23058	20176	29456.60	79290.70	0.00	108747.29	162414.79
7th	23058	20176	29456.60	79290.70	0.00	108747.29	162414.79
8th	23058	20176	29456.60	79290.70	0.00	108747.29	162414.79
9th	23058	20176	29456.60	79290.70	0.00	108747.29	162414.79
10th	23058	20176	29456.60	79290.70	0.00	108747.29	162414.79
11th	22102	19339	28235.31	76003.25	0.00	104238.56	155680.96
Roof	22102	19339	28235.31	76003.25	0.00	104238.56	155680.96
Pent	4000	3500	5110.00	13755.00	0.00	18865.00	28175.00
То	tal	205190	\$299,577.58	\$806,397.19	\$0.00	\$1,105,975	\$1,651,781
Not	e - Slab for	mork was	reduced in or	der to accoun	t for area of be	eams, openir	igs, etc.

			Formwork	- Interior Bea	ams - 03 11 13.	.20 (2550)	•	•
Level	Size	L.F.	S.F.S.A	Material	Labor	Equiptment	Total	Tot Incl O&P
Level	3120	Ц.Г.	3.F.3.A	1.42	5.85	0.00	7.27	11.20
P6	24"x36"	46	307	435.47	1794.00	0.00	2229.47	3434.67
	12"x30"	60	280	397.60	1638.00	0.00	2035.60	3136.00
	48"x20"	72	384	545.28	2246.40	0.00	2791.68	4300.80
4th	48"x20"	604	3221	4574.29	18844.80	0.00	23419.09	36078.93
	12"x30"	60	280	397.60	1638.00	0.00	2035.60	3136.00
5th	48"x20"	604	3221	4574.29	18844.80	0.00	23419.09	36078.93
	12"x30"	60	280	397.60	1638.00	0.00	2035.60	3136.00
6th	48"x20"	604	3221	4574.29	18844.80	0.00	23419.09	36078.93
	12"x30"	60	280	397.60	1638.00	0.00	2035.60	3136.00
7th	48"x20"	604	3221	4574.29	18844.80	0.00	23419.09	36078.93
	12"x30"	60	280	397.60	1638.00	0.00	2035.60	3136.00
8th	48"x20"	604	3221	4574.29	18844.80	0.00	23419.09	36078.93
	12"x30"	60	280	397.60	1638.00	0.00	2035.60	3136.00
9th	48"x20"	604	3221	4574.29	18844.80	0.00	23419.09	36078.93
	12"x30"	60	280	397.60	1638.00	0.00	2035.60	3136.00
10th	48"x20"	604	3221	4574.29	18844.80	0.00	23419.09	36078.93
	12"x30"	60	280	397.60	1638.00	0.00	2035.60	3136.00
11th	48"x20"	604	3221	4574.29	18844.80	0.00	23419.09	36078.93
	12"x30"	60	280	397.60	1638.00	0.00	2035.60	3136.00
Roof	48"x20"	604	3221	4574.29	18844.80	0.00	23419.09	36078.93
	12"x30"	60	280	397.60	1638.00	0.00	2035.60	3136.00
Pent	12"x24"	165	605	859.10	3539.25	0.00	4398.35	6776.00
	Total 33088			\$46,984.49	\$193,562.85	\$0.00	\$240,547.34	\$370,581.87
Note -	Note - Table assumes 8" thick slab							

			Forn	nwork - Shear	Walls - 03 11	13.		
Level	Size	Wall	S.F.S.A	Material	Labor	Equiptment	Total	Tot Incl O&P
Level	5120	Length	э.г.э.A	1.24	6.20	0.00	7.44	11.55
Plaza	15.92	86	2623	3252.52	16262.60	0.00	19515.12	30295.65
P6	9.83	86	1577	1955.07	9775.33	0.00	11730.40	18210.50
4th	12.83	86	2093	2594.91	12974.53	0.00	15569.44	24170.30
5th	11.75	86	1906	2363.85	11819.27	0.00	14183.12	22018.15
6th	11.75	86	1906	2363.85	11819.27	0.00	14183.12	22018.15
7th	11.75	86	1906	2363.85	11819.27	0.00	14183.12	22018.15
8th	11.75	86	1906	2363.85	11819.27	0.00	14183.12	22018.15
9th	11.75	86	1906	2363.85	11819.27	0.00	14183.12	22018.15
10th	11.75	86	1906	2363.85	11819.27	0.00	14183.12	22018.15
11th	11.75	86	1906	2363.85	11819.27	0.00	14183.12	22018.15
Roof	21.17	86	3526	4372.24	21861.20	0.00	26233.44	40725.30
	Total		23163	\$28,721.71	\$143,608.53	\$0.00	\$172,330.24	\$267,528.80

			S	tuctural Co	oncrete - C	olumns - 03 31	. 13.25 (0400)			
امنيما	Liniah t	£1.	C:	ц	C Y	Material	Labor	Equiptment	Total	Tot Incl O&P
Level	Height	f'c	Size	#	C.Y.	110	0	0	110	121
Plaza	15.92	5000	24"x24"	54	127.33	14006.67	0.00	0.00	14006.67	15407.33
			30" ф	12	34.72	3819.73	0.00	0.00	3819.73	4201.70
			12"x24"	8	9.43	1037.53	0.00	0.00	1037.53	1141.28
P6	9.83	5000	24"x24"	40	58.27	6409.88	0.00	0.00	6409.88	7050.86
			30" ф	9	16.09	1769.87	0.00	0.00	1769.87	1946.86
			12"x24"	8	5.83	640.99	0.00	0.00	640.99	705.09
4th	12.83	5000	24"x24"	40	76.05	8365.43	0.00	0.00	8365.43	9201.98
			30" ф	9	21.00	2309.83	0.00	0.00	2309.83	2540.82
			12"x24"	8	7.60	836.54	0.00	0.00	836.54	920.20
			S	tuctural Co	oncrete - C	olumns - 03 31	13.25 (0300)	1		
						Material	Labor	Equiptment	Total	Tot Incl O&P
Level	Height	f'c	Size	#	C.Y.	104	0	0	104	114
5th	11.75	4000	24"x24"	40	69.63	7241.48	0.00	0.00	7241.48	7937.78
			30" ф	9	19.23	1999.49	0.00	0.00	1999.49	2191.75
			12"x24"	8	6.96	724.15	0.00	0.00	724.15	793.78
6th	11.75	4000	24"x24"	40	69.63	7241.48	0.00	0.00	7241.48	7937.78
			30" ф	9	19.23	1999.49	0.00	0.00	1999.49	2191.75
			12"x24"	8	6.96	724.15	0.00	0.00	724.15	793.78
7th	11.75	4000	24"x24"	40	69.63	7241.48	0.00	0.00	7241.48	7937.78
			30" ф	9	19.23	1999.49	0.00	0.00	1999.49	2191.75
			12"x24"	8	6.96	724.15	0.00	0.00	724.15	793.78
8th	11.75	4000	24"x24"	40	69.63	7241.48	0.00	0.00	7241.48	7937.78
			30" ф	9	19.23	1999.49	0.00	0.00	1999.49	2191.75
			12"x24"	8	6.96	724.15	0.00	0.00	724.15	793.78
						_				
			S	tuctural Co	oncrete - C	olumns - 03 31	13.25 (0150)			
		[[Material	Labor	Equiptment	Total	Tot Incl O&P
Level	Height	f'c	Size	#	C.Y.	99	0	0	99	109
						33	Ū	0		105
9th	11.75	3000	24"x24"	40	69.63	6893.33	0.00	0.00	6893.33	7589.63
500	11.75	3000	30" φ	9	19.23	1903.36	0.00	0.00	1903.36	2095.62
			12"x24"	8	6.96	689.33	0.00	0.00	689.33	758.96
10th	11.75	3000	24"x24"	40	69.63	6893.33	0.00	0.00	6893.33	7589.63
1000	11.75	5000	30" φ	9	19.23	1903.36	0.00	0.00	1903.36	2095.62
			12"x24"	8	6.96	689.33	0.00	0.00	689.33	758.96
11th	11.75	3000	24"x24"	40	69.63	6893.33	0.00	0.00	6893.33	7589.63
11(1)	11.75	5000	30" φ	5	10.68	1057.42	0.00	0.00	1057.42	1164.23
			18"x18"	4	3.92	387.75	0.00	0.00	387.75	426.92
			10 ×10 12"x24"	8	6.96	689.33	0.00	0.00	689.33	758.96
Roof	21.17	3000	24"x24"	10	31.36	3104.44	0.00	0.00	3104.44	3418.02
		3000	18"x18"	5	19.24	1904.86	0.00	0.00	1904.86	2097.27
noor			10 / 10							
			12"v2//"	8	12 5/	1741 78	0 00	()(1)()	174178	136771
NOOT			12"x24"	8	12.54	1241.78	0.00	0.00	1241.78	1367.21
			12"x24"	8	12.54	1241.78	0.00	0.00	1241.78	1367.21

	•		Stu	uctural Cor	ncrete - Sla	bs and Dro	p Panels - 03 3	31 13.25 (03 5	0)		•
Laval	C F	Slab	Drop	Drop	# of	C Y	Material	Labor	Equiptment	Total	Tot Incl O&P
Level	S.F.	Depth	Depth	Size	Drops	C.Y.	107	0	0	107	117
P6	24893	8	3.25	8'x8'	26	631.33	67552.67	0.00	0.00	67552.67	73866.00
			8	8'x8'	7	11.06	1183.60	0.00	0.00	1183.60	1294.22
4th	23058	8	3.25	8'x8'	3	571.26	61124.74	0.00	0.00	61124.74	66837.33
5th	23058	8	3.25	8'x8'	3	571.26	61124.74	0.00	0.00	61124.74	66837.33
6th	23058	8	3.25	8'x8'	3	571.26	61124.74	0.00	0.00	61124.74	66837.33
7th	23058	8	3.25	8'x8'	3	571.26	61124.74	0.00	0.00	61124.74	66837.33
8th	23058	8	3.25	8'x8'	3	571.26	61124.74	0.00	0.00	61124.74	66837.33
9th	23058	8	3.25	8'x8'	3	571.26	61124.74	0.00	0.00	61124.74	66837.33
10th	23058	8	3.25	8'x8'	3	571.26	61124.74	0.00	0.00	61124.74	66837.33
11th	22102	8	3.25	8'x8'	3	547.65	58599.01	0.00	0.00	58599.01	64075.56
Roof	22102	8	3.25	8'x8'	9	551.51	59011.16	0.00	0.00	59011.16	64526.22
			5.5	8'x8'	8	8.69	929.98	0.00	0.00	929.98	1016.89
		То	tal			5749.062	\$615,149.60	\$0.00	\$0.00	\$615,149.60	\$672,640.22

	Stuctural Concrete - Beams - 03 31 13.25 (0350)												
Level	Size Int	L.F. Int	Size Ext	L.F. Ext	C.Y.	Material	Labor	Equiptment	Total	Tot Incl O&P			
Level	Beams	Beams	Beams	Beams	C.Y.	107	0	0	107	117			
P6	24"x36"	46	24"x20"	86	50.54	5408.12	0.00	0.00	5408.12	5913.56			
	12"x30"	60	36"x24"	145									
	48"x20"	72	-	-									
4th	48"x20"	604	24"x20"	86	121.41	12990.59	0.00	0.00	12990.59	14204.67			
	12"x30"	60	36"x24"	145									
5th	48"x20"	604	24"x20"	86	121.41	12990.59	0.00	0.00	12990.59	14204.67			
	12"x30"	60	36"x24"	145									
6th	48"x20"	604	24"x20"	86	121.41	12990.59	0.00	0.00	12990.59	14204.67			
	12"x30"	60	36"x24"	145									
7th	48"x20"	604	24"x20"	86	121.41	12990.59	0.00	0.00	12990.59	14204.67			
	12"x30"	60	36"x24"	145									
8th	48"x20"	604	24"x20"	86	121.41	12990.59	0.00	0.00	12990.59	14204.67			
	12"x30"	60	36"x24"	145									
9th	48"x20"	604	24"x20"	86	121.41	12990.59	0.00	0.00	12990.59	14204.67			
	12"x30"	60	36"x24"	145									
10th	48"x20"	604	24"x20"	86	121.41	12990.59	0.00	0.00	12990.59	14204.67			
	12"x30"	60	36"x24"	145									
11th	48"x20"	604	24"x20"	86	121.41	12990.59	0.00	0.00	12990.59	14204.67			
	12"x30"	60	36"x24"	145									
Roof	48"x20"	604	24"x20"	86	124.52	13323.48	0.00	0.00	13323.48	14568.67			
	12"x30"	60	36"x24"	166									
Pent	12"x24"	165	18"x24"	160	20.00	2140.00	0.00	0.00	2140.00	2340.00			
		Total			1166.32	\$124,796.35	\$0.00	\$0.00	\$124,796.35	\$136,459.56			
	Above valu vill be coun			-									

		•	Stuctura	al Concrete	- Shear Walls	s - 03 31 13.25	(0400)	-	
		Wall	Wall		Material	Labor	Equiptment	Total	Tot Incl O&P
Level	Height	Length	Width	C.Y.	110	0	0	110	121
		Lengen			110			110	
Plaza	15.92	86	12"	50.70	5576.73	0.00	0.00	5576.73	6134.40
P6	9.83	86	12"	31.32	3445.31	0.00	0.00	3445.31	3789.84
4th	12.83	86	12"	40.88	4496.42	0.00	0.00	4496.42	4946.06
	12.00			10.00		0.00	0.00		10.000
			Stuctura	al Concrete	- Shear Walls	s - 03 31 13.25	(0300)		
	Line to be	Wall	Wall	<u> </u>	Material	Labor	Equiptment	Total	Tot Incl O&P
Level	Height	Length	Width	C.Y.	104	0	0	104	114
5th	11.75	86	12"	37.43	3892.30	0.00	0.00	3892.30	4266.56
6th	11.75	86	12"	37.43	3892.30	0.00	0.00	3892.30	4266.56
7th	11.75	86	12"	37.43	3892.30	0.00	0.00	3892.30	4266.56
8th	11.75	86	12"	37.43	3892.30	0.00	0.00	3892.30	4266.56
	I	Γ	1	al Concrete	- Shear Walls	s - 03 31 13.25	(0150)		
Level	Height	Wall	Wall	C.Y.	Material	Labor	Equiptment	Total	Tot Incl O&P
		Length	Width		99	0	0	99	109
9th	11.75	86	12"	37.43	3705.17	0.00	0.00	3705.17	4079.43
10th	11.75	86	12"	37.43	3705.17	0.00	0.00	3705.17	4079.43
11th	11.75	86	12"	37.43	3705.17	0.00	0.00	3705.17	4079.43
Roof	21.17	86	12"	67.42	6674.56	0.00	0.00	6674.56	7348.75
	То	tal		452.30	\$46,877.70	\$0.00	\$0.00	\$46,877.70	\$51,523.56
	-	:	Placin	g Concrete	- Shear Walls	- 3 31 13.70 (5100)		
		Wall	Wall		Material		1		
Level	Height	vvan			Iviaterial	Labor	Equiptment	Total	Tot Incl O&P
	0	Length	Width	C.Y.	0	Labor 23	Equiptment 7.05	Total 30.05	Tot Incl O&P 45
				C.Y.					
Plaza	15.92			C.Y. 50.70					
Plaza P6		Length	Width		0	23	7.05	30.05	45
	15.92	Length 86	Width 12"	50.70	0	23 1166.04	7.05	30.05 1523.46	45 2281.39
P6	15.92 9.83	Length 86 86	Width 12" 12"	50.70 31.32	0 0.00 0.00	23 1166.04 720.38	7.05 357.42 220.81	30.05 1523.46 941.20	45 2281.39 1409.44
P6 4th	15.92 9.83 12.83	Length 86 86 86	Width 12" 12" 12"	50.70 31.32 40.88	0 0.00 0.00 0.00	23 1166.04 720.38 940.16	7.05 357.42 220.81 288.18	30.05 1523.46 941.20 1228.34	45 2281.39 1409.44 1839.44
P6 4th 5th	15.92 9.83 12.83 11.75	Length 86 86 86 86 86	Width 12" 12" 12" 12"	50.70 31.32 40.88 37.43	0 0.00 0.00 0.00 0.00	23 1166.04 720.38 940.16 860.80	7.05 357.42 220.81 288.18 263.85	30.05 1523.46 941.20 1228.34 1124.65	45 2281.39 1409.44 1839.44 1684.17
P6 4th 5th 6th	15.92 9.83 12.83 11.75 11.75	Length 86 86 86 86 86 86	Width 12" 12" 12" 12" 12"	50.70 31.32 40.88 37.43 37.43	0 0.00 0.00 0.00 0.00 0.00	23 1166.04 720.38 940.16 860.80 860.80	7.05 357.42 220.81 288.18 263.85 263.85	30.05 1523.46 941.20 1228.34 1124.65 1124.65	45 2281.39 1409.44 1839.44 1684.17 1684.17
P6 4th 5th 6th	15.92 9.83 12.83 11.75 11.75	Length 86 86 86 86 86 86 86	Width 12" 12" 12" 12" 12" 12" 12" 12" 12" 12"	50.70 31.32 40.88 37.43 37.43 37.43	0 0.00 0.00 0.00 0.00 0.00	23 1166.04 720.38 940.16 860.80 860.80 860.80	7.05 357.42 220.81 288.18 263.85 263.85 263.85	30.05 1523.46 941.20 1228.34 1124.65 1124.65 1124.65	45 2281.39 1409.44 1839.44 1684.17 1684.17 1684.17
P6 4th 5th 6th 7th	15.92 9.83 12.83 11.75 11.75 11.75	Length 86 86 86 86 86 86	Width 12" 12" 12" 12" 12" 12" 12" 12" 12" 12"	50.70 31.32 40.88 37.43 37.43 37.43 37.43	0 0.00 0.00 0.00 0.00 0.00 0.00	23 1166.04 720.38 940.16 860.80 860.80 860.80	7.05 357.42 220.81 288.18 263.85 263.85 263.85	30.05 1523.46 941.20 1228.34 1124.65 1124.65	45 2281.39 1409.44 1839.44 1684.17 1684.17
P6 4th 5th 6th	15.92 9.83 12.83 11.75 11.75	Length 86 86 86 86 86 86 86	Width 12" 12" 12" 12" 12" 12" 12" 12" 12" 12"	50.70 31.32 40.88 37.43 37.43 37.43	0 0.00 0.00 0.00 0.00 0.00 0.00 - Shear Walls	23 1166.04 720.38 940.16 860.80 860.80 860.80 - 3 31 13.70 (7.05 357.42 220.81 288.18 263.85 263.85 263.85 263.85	30.05 1523.46 941.20 1228.34 1124.65 1124.65 1124.65	45 2281.39 1409.44 1839.44 1684.17 1684.17 1684.17
P6 4th 5th 6th 7th Level	15.92 9.83 12.83 11.75 11.75 11.75 Height	Length 86 86 86 86 86 86 86 Wall Length	Width 12" 12" 12" 12" 12" 12" 12" Vall Width	50.70 31.32 40.88 37.43 37.43 37.43 37.43 37.43	0 0.00 0.00 0.00 0.00 0.00 - Shear Walls Material 0	23 1166.04 720.38 940.16 860.80 860.80 860.80 	7.05 357.42 220.81 288.18 263.85 263.85 263.85 263.85 5200) Equiptment 13.6	30.05 1523.46 941.20 1228.34 1124.65 1124.65 1124.65 1124.65 Total 45.6	45 2281.39 1409.44 1839.44 1684.17 1684.17 1684.17 Tot Incl O&P 66.5
P6 4th 5th 6th 7th Level	15.92 9.83 12.83 11.75 11.75 11.75 Height	Length 86 86 86 86 86 86 Wall Length 86	Width 12" 12" 12" 12" 12" 12" 12" Vall Width Uidth 12"	50.70 31.32 40.88 37.43 37.43 37.43 g Concrete C.Y. 37.43	0 0.00 0.00 0.00 0.00 0.00 0.00 - Shear Walls Material 0	23 1166.04 720.38 940.16 860.80 860.80 860.80 - 3 31 13.70 (Labor 32 1197.63	7.05 357.42 220.81 288.18 263.85 263.85 263.85 263.85 5200) Equiptment 13.6 508.99	30.05 1523.46 941.20 1228.34 1124.65 1124.65 1124.65 Total 45.6 1706.62	45 2281.39 1409.44 1839.44 1684.17 1684.17 1684.17 Tot Incl O&P 66.5 2488.82
P6 4th 5th 6th 7th Level	15.92 9.83 12.83 11.75 11.75 11.75 Height 11.75 11.75	Length 86 86 86 86 86 86 Wall Length 86 86	Width 12" 12" 12" 12" 12" 12" 12" Vall Width 12" 12" 12" 12" 12" 12" 12" 12" 12" 12"	50.70 31.32 40.88 37.43 37.43 37.43 g Concrete C.Y. 37.43 37.43	0 0.00 0.00 0.00 0.00 0.00 0.00 - Shear Walls Material 0 0.00 0.00	23 1166.04 720.38 940.16 860.80 860.80 860.80 :-33113.70(Labor 32 1197.63 1197.63	7.05 357.42 220.81 288.18 263.85 263.85 263.85 5200) Equiptment 13.6 508.99 508.99	30.05 1523.46 941.20 1228.34 1124.65 1124.65 1124.65 Total 45.6 1706.62 1706.62	45 2281.39 1409.44 1839.44 1684.17 1684.17 1684.17 Tot Incl O&P 66.5 2488.82 2488.82
P6 4th 5th 6th 7th Level Level 8th 9th 10th	15.92 9.83 12.83 11.75 11.75 11.75 Height 11.75 11.75 11.75 11.75	Length 86 86 86 86 86 86 Wall Length 86 86 86 86	Width 12" 12" 12" 12" 12" 12" 12" 12" 12" 12"	50.70 31.32 40.88 37.43 37.43 37.43 g Concrete C.Y. 37.43 37.43 37.43 37.43	0 0.00 0.00 0.00 0.00 0.00 0.00 - Shear Walls Material 0 0.00 0.00 0.00	23 1166.04 720.38 940.16 860.80 860.80 860.80 - 3 31 13.70 (Labor 32 1197.63 1197.63 1197.63	7.05 357.42 220.81 288.18 263.85 263.85 263.85 5200) Equiptment 13.6 508.99 508.99 508.99	30.05 1523.46 941.20 1228.34 1124.65 1124.65 1124.65 1124.65 1 24.65 1 24.65 1 24.65 1 124.65 1 126 1 106.62 1 706.62 1 706.62	45 2281.39 1409.44 1839.44 1684.17 1684.17 1684.17 Tot Incl O&P 66.5 2488.82 2488.82 2488.82
P6 4th 5th 6th 7th 	15.92 9.83 12.83 11.75 11.75 11.75 Height Height 11.75 11.75 11.75 11.75	Length 86 86 86 86 86 86 Wall Length 86 86 86 86 86 86	Width 12" 12" 12" 12" 12" 12" 12" Vall Width Uall Width 12" 12" 12" 12" 12" 12" 12" 12" 12"	50.70 31.32 40.88 37.43 37.43 37.43 37.43 5 Concrete C.Y. 37.43 37.43 37.43 37.43 37.43	0 0.00 0.00 0.00 0.00 0.00 0.00 - Shear Walls Material 0 0.00 0.00 0.00 0.00 0.00	23 1166.04 720.38 940.16 860.80 860.80 60.80 60.80 70.80 80.80 80.80 113.70 1197.63 1197.63 1197.63 1197.63	7.05 357.42 220.81 288.18 263.85 263.85 263.85 263.85 5200) Equiptment 13.6 508.99 508.99 508.99 508.99	30.05 1523.46 941.20 1228.34 1124.65 1124.65 1124.65 1124.65 1124.65 1124.65 1124.65 1124.65 1124.65 1126.62 1706.62 1706.62 1706.62	45 2281.39 1409.44 1839.44 1684.17 1684.17 1684.17 1684.17 7 0000000000000000000000000000000000
P6 4th 5th 6th 7th Level Level 8th 9th 10th	15.92 9.83 12.83 11.75 11.75 11.75 Height 11.75 11.75 11.75 11.75	Length 86 86 86 86 86 86 Wall Length 86 86 86 86	Width 12" 12" 12" 12" 12" 12" 12" 12" 12" 12"	50.70 31.32 40.88 37.43 37.43 37.43 g Concrete C.Y. 37.43 37.43 37.43 37.43	0 0.00 0.00 0.00 0.00 0.00 0.00 - Shear Walls Material 0 0.00 0.00 0.00	23 1166.04 720.38 940.16 860.80 860.80 860.80 - 3 31 13.70 (Labor 32 1197.63 1197.63 1197.63	7.05 357.42 220.81 288.18 263.85 263.85 263.85 5200) Equiptment 13.6 508.99 508.99 508.99	30.05 1523.46 941.20 1228.34 1124.65 1124.65 1124.65 1124.65 1 24.65 1 24.65 1 24.65 1 124.65 1 126 1 106.62 1 706.62 1 706.62	45 2281.39 1409.44 1839.44 1684.17 1684.17 1684.17 Tot Incl O&P 66.5 2488.82 2488.82 2488.82
P6 4th 5th 6th 7th 	15.92 9.83 12.83 11.75 11.75 11.75 Height Height 11.75 11.75 11.75 11.75	Length 86 86 86 86 86 86 Wall Length 86 86 86 86 86 86	Width 12" 12" 12" 12" 12" 12" 12" Vall Width Uall Width 12" 12" 12" 12" 12" 12" 12" 12" 12"	50.70 31.32 40.88 37.43 37.43 37.43 37.43 5 Concrete C.Y. 37.43 37.43 37.43 37.43 37.43	0 0.00 0.00 0.00 0.00 0.00 0.00 - Shear Walls Material 0 0.00 0.00 0.00 0.00 0.00	23 1166.04 720.38 940.16 860.80 860.80 60.80 60.80 70.80 80.80 80.80 113.70 1197.63 1197.63 1197.63 1197.63	7.05 357.42 220.81 288.18 263.85 263.85 263.85 263.85 5200) Equiptment 13.6 508.99 508.99 508.99 508.99	30.05 1523.46 941.20 1228.34 1124.65 1124.65 1124.65 1124.65 1124.65 1124.65 1124.65 1124.65 1124.65 1126.62 1706.62 1706.62 1706.62	45 2281.39 1409.44 1839.44 1684.17 1684.17 1684.17 1684.17 7 0000000000000000000000000000000000
P6 4th 5th 6th 7th 	15.92 9.83 12.83 11.75 11.75 11.75 11.75 11.75 11.75 11.75 11.75 11.75 21.17	Length 86 86 86 86 86 86 Wall Length 86 86 86 86 86 86	Width 12" 12" 12" 12" 12" 12" 12" Vall Width Uall Width 12" 12" 12" 12" 12" 12" 12" 12" 12"	50.70 31.32 40.88 37.43 37.43 37.43 37.43 5 Concrete C.Y. 37.43 37.43 37.43 37.43 37.43	0 0.00 0.00 0.00 0.00 0.00 0.00 - Shear Walls Material 0 0.00 0.00 0.00 0.00 0.00	23 1166.04 720.38 940.16 860.80 860.80 60.80 60.80 70.80 80.80 80.80 113.70 1197.63 1197.63 1197.63 1197.63	7.05 357.42 220.81 288.18 263.85 263.85 263.85 263.85 5200) Equiptment 13.6 508.99 508.99 508.99 508.99	30.05 1523.46 941.20 1228.34 1124.65 1124.65 1124.65 1124.65 1124.65 1124.65 1124.65 1124.65 1124.65 1126.62 1706.62 1706.62 1706.62	45 2281.39 1409.44 1839.44 1684.17 1684.17 1684.17 1684.17 7 0000000000000000000000000000000000

			Placi	ng Concrete	e - Columns -	03 31 13.70 (0	800)		
Laval	114:44	Cine	ц	C V	Material	Labor	Equiptment	Total	Tot Incl O&P
Level	Height	Size	#	C.Y.	0	27.5	8.45	35.95	54
Plaza	15.92	24"x24"	54	127.33	0.00	3501.67	1075.97	4577.63	6876.00
		30" ф	12	34.72	0.00	954.93	293.42	1248.36	1875.14
		12"x24"	8	9.43	0.00	259.38	79.70	339.08	509.33
P6	9.83	24"x24"	40	58.27	0.00	1602.47	492.40	2094.86	3146.67
		30" ф	9	16.09	0.00	442.47	135.96	578.43	868.85
		12"x24"	8	5.83	0.00	160.25	49.24	209.49	314.67
4th	12.83	24"x24"	40	76.05	0.00	2091.36	642.62	2733.98	4106.67
		30" ф	9	21.00	0.00	577.46	177.44	754.90	1133.92
		12"x24"	8	7.60	0.00	209.14	64.26	273.40	410.67
5th	11.75	24"x24"	40	69.63	0.00	1914.81	588.37	2503.19	3760.00
	_	30" ф	9	19.23	0.00	528.71	162.46	691.17	1038.20
		12"x24"	8	6.96	0.00	191.48	58.84	250.32	376.00
6th	11.75	24"x24"	40	69.63	0.00	1914.81	588.37	2503.19	3760.00
		30" ф	9	19.23	0.00	528.71	162.46	691.17	1038.20
		12"x24"	8	6.96	0.00	191.48	58.84	250.32	376.00
7th	11.75	24"x24"	40	69.63	0.00	1914.81	588.37	2503.19	3760.00
		30" ф	9	19.23	0.00	528.71	162.46	691.17	1038.20
		12"x24"	8	6.96	0.00	191.48	58.84	250.32	376.00
		12 //21	0	0.50	0.00	191110	50.01	200.02	570.00
	1		Placi	ng Concrete	e - Columns -	03 31 13.70 (0	850)		
Laval	11	Cinc	ц	C V	Material	Labor	Equiptment	Total	Tot Incl O&P
Level	Height	Size	#	C.Y.	0	41	17.5	58.5	86
8th	11.75	24"x24"	40	69.63	0.00	2854.81	1218.52	4073.33	5988.15
		30" ф	9	19.23	0.00	788.26	336.45	1124.71	1653.43
		12"x24"	8	6.96	0.00	285.48	121.85	407.33	598.81
9th	11.75	24"x24"	40	69.63	0.00	2854.81	1218.52	4073.33	5988.15
		30" ф	9	19.23	0.00	788.26	336.45	1124.71	1653.43
		12"x24"	8	6.96	0.00	285.48	121.85	407.33	598.81
10th	11.75	24"x24"	40	69.63	0.00	2854.81	1218.52	4073.33	5988.15
		30" ф	9	19.23	0.00	788.26	336.45	1124.71	1653.43
		12"x24"	8	6.96	0.00	285.48	121.85	407.33	598.81
11th	11.75	24"x24"	40	69.63	0.00	2854.81	1218.52	4073.33	5988.15
		30" ф	5	10.68	0.00	437.92	186.92	624.84	918.57
		18"x18"	4	3.92	0.00	160.58	68.54	229.13	336.83
		12"x24"	8	6.96	0.00	285.48	121.85	407.33	598.81
Roof	21.17	24"x24"	10	31.36	0.00	1285.68	548.77	1834.44	2696.79
1,001				19.24	0.00	788.88	336.72	1125.60	1654.73
Root		18"x18"	5	13.24	0.00	,			200
		18"x18" 12"x24"	8	12.54	0.00	514.27			1078.72
							219.51	733.78	

			PI	acing Con	crete - S	abs an	d Drop	Panels -	03 3	1 13.70 (19	500)			
Level	S.F.	Slab	Drop	Drop	# of		C.Y.	Materi	al	Labor		Equiptmen	t Total	Tot Incl O&P
Level	э.г.	Depth	Depth	Size	Drops		J. T.	0		15.75		4.85	20.6	31
							• • •							
P6	24893	8	3.25 8	8'x8' 8'x8'	26 7	64	2.40	0.00		10117.7	2	3115.62	13233.34	19914.25
4th	23058	8	° 3.25	8'x8'	3	57	1.26	0.00		8997.3	3	2770.61	11767.94	17709.04
5th	23058	8	3.25	8'x8'	3		1.26	0.00		8997.3		2770.61	11767.94	17709.04
6th	23058	8	3.25	8'x8'	3		1.26	0.00		8997.3		2770.61	11767.94	17709.04
7th	23058	8	3.25	8'x8'	3		1.26	0.00		8997.3	3	2770.61	11767.94	17709.04
				acing Con		abs an	d Drop	1			_			
Level	S.F.	Slab	Drop	Drop	# of	(C.Y.	Materi	al	Labor		Equiptmen		Tot Incl O&P
		Depth	Depth	Size	Drops			0		26		11.15	37.15	54.5
0+h	23058	0	2.75	8'x8'	2	67	1 76			1/057	74	6260 E	1 21222	21122 62
8th 9th	23058	8 8	3.25 3.25	8'x8'	3		'1.26 '1.26		0.00 0.00			6369.5 6369.5		
10th	23058	8	3.25	8'x8'	3		1.20	-	0.00 0.00			6369.5		
10th	22102	8	3.25	8'x8'	3		1.20		0.00 0.00			6106.3		
Roof	22102	8	3.25	8'x8'	9		50.20	-	0.00			6246.2		
		0	5.5	8'x8'	8					1000		021012	2001110	00000177
		Tot	al			574	9.062	\$0.00)	\$119,469	.43	\$45,659.22	\$165,128.64	\$244,529.21
				Placin	g Conci	ete - I	Beams	s - 03 31 1	3.70) (0050)				
	Size Int	L.F. Int	Size E		xt		T	aterial		Labor	Eq	uiptment	Total	Tot Incl O&P
Level	Beams	Beams				C.Y.		0		42		12.95	54.95	82.5
P6	24"x36"	46	24"x20)" 86		50.54		0.00	2	122.81		654.53	2777.35	4169.81
	12"x30"	60	36"x24											
	48"x20"	72	-	-										
4th	48"x20"	604	24"x20		1	21.41		0.00	5	6099.11		1572.23	6671.34	10016.11
	12"x30"	60	36"x24			CT.4T		0.00	5	,055.11		1372.23	0071.54	10010.11
5th	48"x20"	604	24"x20			21.41		0.00	5	5099.11		1572.23	6671.34	10016.11
501	12"x30"	60	36"x24			CT.4T		0.00	5	,055.11		1372.23	0071.54	10010.11
6th	48"x20"	604	24"x20			21.41		0.00	5	6099.11		1572.23	6671.34	10016.11
oth	12"x30"	60	36"x24			21.41		0.00	5	099.11		1372.23	0071.34	10010.11
7th	48"x20"	604	24"x20			21.41		0.00		6099.11		1572.23	6671.34	10016.11
701						21.41		0.00	5	099.11		1572.23	0071.34	10010.11
	12"x30"	60	36"x24	4" 145)									
				Placin	g Concr	ete - F	Reams	i - 03 31 1	3 70	0 (0100)				
	Size Int	L.F. Int	Size E		xt		-	aterial		Labor	Ea	uiptment	Total	Tot Incl O&P
Level	Beams	Beams				C.Y.		0		63.5		27.5	91	133
8th	48"x20"	604	24"x20)" 86	1	21.41		0.00	7	709.37		3338.70	11048.07	16147.19
	12"x30"	60	36"x24											
9th	48"x20"	604	24"x20			21.41		0.00	7	709.37		3338.70	11048.07	16147.19
	12"x30"	60	36"x24											
10th	48"x20"	604	24"x20			21.41		0.00	7	709.37		3338.70	11048.07	16147.19
2000	12"x30"	60	36"x24						ĺ					
11th	48"x20"	604	24"x2			21.41		0.00	7	709.37		3338.70	11048.07	16147.19
	12"x30"	60	36"x24						,				110 10:07	-01 17.15
Roof	48"x20"	604	24"x20			24.52		0.00	7	906.93		3424.26	11331.19	16560.96
	12"x30"	60	36"x24					5.00		500.55		5 12 1.20	11331.13	10500.50
Pent	12 x30	165	18"x24			20.00		0.00	1	270.00		550.00	1820.00	2660.00
i chi	12 724	105	10 /2	. 100				0.00	1			550.00	1020.00	2000.00
		Total			11	66.32		\$0.00	\$6	2,533.67	\$	24,272.51	\$86,806.18	\$128,043.96
Noto	Above val		on all fla	orchovin	g an 9"	dah							í	133 140
	vill be cou				-									
WHICHV	un de cou		I LIE SIDD	and drop	paneri	anig	J							

		Concrete Fin	ishing - Slabs	- 03 35 13.30 (0250)	
Level	с г	Material	Labor	Equiptment	Total	Tot Incl O&P
Level	S.F.	0	0.58	0.03	0.61	0.96
P6	24893	0	14437.94	746.79	15184.73	23897.28
4th	23058	0	13373.64	691.74	14065.38	22135.68
5th	23058	0	13373.64	691.74	14065.38	22135.68
6th	23058	0	13373.64	691.74	14065.38	22135.68
7th	23058	0	13373.64	691.74	14065.38	22135.68
8th	23058	0	13373.64	691.74	14065.38	22135.68
9th	23058	0	13373.64	691.74	14065.38	22135.68
10th	23058	0	13373.64	691.74	14065.38	22135.68
11th	22102	0	12819.16	663.06	13482.22	21217.92
Roof	22102	0	12819.16	663.06	13482.22	21217.92
То	tal	\$0.00	\$133,691.74	\$6,915.09	\$140,606.83	\$221,282.88

		F	inishing C	oncrete - W	alls and Colu	imns - 03 35 2	9.60 (0020)		
Loval	Hoight	SFCA	SFCA	SF Total	Material	Labor	Equiptment	Total	Tot Incl O&P
Level	Height	(Walls)	(Cols)	per Floor	0.04	0.65	0	0.69	1.07
Plaza	15.92	2610	6982	9593	383.71	6235.29	0.00	6619.00	10264.24
P6	9.83	1613	4314	5926	237.06	3852.17	0.00	4089.22	6341.26
4th	12.83	2105	5630	7734	309.38	5027.40	0.00	5336.78	8275.88
5th	11.75	1927	5155	7082	283.26	4603.01	0.00	4886.28	7577.27
6th	11.75	1927	5155	7082	283.26	4603.01	0.00	4886.28	7577.27
7th	11.75	1927	5155	7082	283.26	4603.01	0.00	4886.28	7577.27
8th	11.75	1927	5155	7082	283.26	4603.01	0.00	4886.28	7577.27
9th	11.75	1927	5155	7082	283.26	4603.01	0.00	4886.28	7577.27
10th	11.75	1927	5155	7082	283.26	4603.01	0.00	4886.28	7577.27
11th	11.75	1927	5067	6994	279.78	4546.37	0.00	4826.15	7484.03
Roof	21.17	3471	3344	6816	272.63	4430.18	0.00	4702.81	7292.76
	То	tal		79553.07	\$3,182.12	\$51,709.49	\$0.00	\$54,891.62	\$85,121.78

		Rei	nforcing Bars	- Slabs - 03 21	11.60 (0402)		
Level		Tons	Material	Labor	Equiptment	Total	Tot Incl O&P
Level		TONS	1000	560	0	1560	2020
P6	23058	32.89	32890.00	18418.40	0.00	51308.40	66437.80
4th	23058	29.79	29790.00	16682.40	0.00	46472.40	60175.80
5th	23058	29.79	29790.00	16682.40	0.00	46472.40	60175.80
6th	23058	29.79	29790.00	16682.40	0.00	46472.40	60175.80
7th	23058	29.79	29790.00	16682.40	0.00	46472.40	60175.80
8th	23058	29.79	29790.00	16682.40	0.00	46472.40	60175.80
9th	23058	29.79	29790.00	16682.40	0.00	46472.40	60175.80
10th	22102	28.55	28554.89	15990.74	0.00	44545.62	57680.87
11th	22102	28.55	28554.89	15990.74	0.00	44545.62	57680.87
Roof	4000	5.17	5167.84	2893.99	0.00	8061.83	10439.03
То	tal	273.91	\$273,907.61	\$153,388.26	\$0.00	\$427,295.87	\$553,293.37

	Reinforcing Bars - Columns - 03 21 11.60 (0202)												
Loval	Hoight	#	Tons	Material	Labor	Equiptment	Total	Tot Incl O&P					
Level	Height	#	Tons	1000	1080	0	2080	2880					
Plaza	15.92	74	24.02	24016.02	25937.30	0.00	49953.33	69166.14					
P6	9.83	57	11.43	11428.60	12342.88	0.00	23771.48	32914.35					
4th	12.83	57	14.92	14915.29	16108.51	0.00	31023.79	42956.02					
5th	11.75	57	13.66	13656.20	14748.70	0.00	28404.90	39329.86					
6th	11.75	57	13.66	13656.20	14748.70	0.00	28404.90	39329.86					
7th	11.75	57	13.66	13656.20	14748.70	0.00	28404.90	39329.86					
8th	11.75	57	13.66	13656.20	14748.70	0.00	28404.90	39329.86					
9th	11.75	57	13.66	13656.20	14748.70	0.00	28404.90	39329.86					
10th	11.75	57	13.66	13656.20	14748.70	0.00	28404.90	39329.86					
11th	11.75	57	13.66	13656.20	14748.70	0.00	28404.90	39329.86					
Roof	21.17	23	9.93	9926.53	10720.65	0.00	20647.19	28588.41					
	Total		155.88	\$155,879.85	\$168,350.24	\$0.00	\$324,230.09	\$448,933.97					
	Note - Values above are based on the typical column requiring												

	Reinforcing Bars - Walls - 03 21 11.60 (0702)												
Loval	Hoight	Longth	Tons	Material	Labor	Equiptment	Total	Tot Incl O&P					
Level	Height	Length	TONS	1000	540	0	1540	1980					
Plaza	15.92	86	3.18	3183.33	1719.00	0.00	4902.33	6303.00					
P6	9.83	86	1.97	1966.67	1062.00	0.00	3028.67	3894.00					
4th	12.83	86	2.57	2566.67	1386.00	0.00	3952.67	5082.00					
5th	11.75	86	2.35	2350.00	1269.00	0.00	3619.00	4653.00					
6th	11.75	86	2.35	2350.00	1269.00	0.00	3619.00	4653.00					
7th	11.75	86	2.35	2350.00	1269.00	0.00	3619.00	4653.00					
8th	11.75	86	2.35	2350.00	1269.00	0.00	3619.00	4653.00					
9th	11.75	86	2.35	2350.00	1269.00	0.00	3619.00	4653.00					
10th	11.75	86	2.35	2350.00	1269.00	0.00	3619.00	4653.00					
11th	11.75	86	2.35	2350.00	1269.00	0.00	3619.00	4653.00					
Roof	21.17	86	4.23	4233.33	2286.00	0.00	6519.33	8382.00					
	Total		28.40	\$28,400.00	\$15,336.00	\$0.00	\$43,736.00	\$56,232.00					
Note - V	Note - Values above are based on #4's at 12" o.c. each way but include (4) #11 bars at each wall corner for bounday elements												

	Post Tensioned Reinforcing Cables - Beams - 03 23 05.50 (2220)											
Loval	Tone	Material	Labor	Equiptment	Total	Tot Incl O&P						
Level	Tons	1220	2720	60	4000	5880						
P6	0.37	456.28	1017.28	22.44	1496	2199.12						
4th	3.14	3832.02	8543.52	188.46	12564	18469.08						
5th	3.14	3832.02	8543.52	188.46	12564	18469.08						
6th	3.14	3832.02	8543.52	188.46	12564	18469.08						
7th	3.14	3832.02	8543.52	188.46	12564	18469.08						
8th	3.14	3832.02	8543.52	188.46	12564	18469.08						
9th	3.14	3832.02	8543.52	188.46	12564	18469.08						
10th	3.14	3832.02	8543.52	188.46	12564	18469.08						
11th	3.14	3832.02	8543.52	188.46	12564	18469.08						
Roof	3.14	3832.02	8543.52	188.46	12564	18469.08						
Total	28.64	\$34,944.46	\$77,908.96	\$1,718.58	\$114,572.00	\$168,420.84						

Schedule Comparison

					C	Conc	ret	e St	ruct	ture	Scł	ned	ule								
Days	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42
Typical	C	olun	nn F\	N																	
Floor			Reba	r																	
				Con																	
					[Cure]														
									Slab/	'Bear	n FV	/									
												R	einf	orcin	g						
														Ten	don						
																Со	nc.				
																		[Cure]	

						Ste	eel s	Stru	ctu	re S	che	dule	e								
Days	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42
Typical	Col																				
Floor 1			Bea	ams																	
						Deck	(
							Sti	ıds													
							W	NF													
									Со	nc.											
Typical						Col															
Floor 2								Bea	ams												
											Deck	(
												Stu	ıds								
												W	WF								
														Со	nc.						

JMV Thesis Redesigned Structure Schedule Columns : 280 horas = 19.7 days -> 1.8 days per follow 59.5 lons = 4.2 days / Sloor Beamsi "CIMEND" Studs: 1481 = 1.56 days / Stoor Slabs = Darlay: 23058 54 3600 3F = 6.41 - 2.2 days / Floor (serens) WWF: 230,58 CSF = 6-59 -> 2.2 days/ floor (3 crews) Concrete: 302.3 6.1 2 2.16 -> 1.08 days/ Sloor (Lereus)

_	JMV		Thesis			
	Orignal	Structure	Schedule			
	Colym	45:				
		Forms:	5155 6 FCA =	23.87 -7	7.96 days / (3 craws)	floor
"CHENNY		Reber;	27310 165 15000 165 =	9,11 -> 41	6 day/floor (2 erews)	
		Concrete:	95.8 C.Y. =	1.04 days 1 (10	(Sloor trew)	
	Beans	1 5 kabas ;				
		Forms :	4 870 SECA 365 SECA	29456 5PCA 545 5PCA	= 67.5 ->	22.5 days/stan (3cras)
		Renforcey :	3200 1bs	= 19,67 -	6.2 days , (3 crews)	Glass
		Tandons:	6700 165 1200 165	= 5,25 -+>	2.6 days /f (2 crews)	lour
		Concrete:	710 C.Y.	= 5.21-7	2.6 days/fi (Z crews)	ear
2						

JMV Thesis Super Structure Schedule Composition Steel Project Duration 10 (10) +10 = 110 days Concrete Project Davadem "UNANA 10 (34) +6 = 346 days Days Saved 346-110 = 236 work days 236 x 7/5 = 330.4 days ≈ 10,9 months Assume It months seved on schedule